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Genetic information is transferred by means of discrete elements: 4 letters of genetic 
alphabet, 64 amino acids, etc. General theory of processing of discrete signals utilizes 
encoding such signals by means of special mathematical matrices and spectral 
representation of signals with the main aim of increase of reliability and efficiency of 
information transfer but not for prevention of reading this information by undesirable 
reader at all [Sklar, 2001; Ahmed, Rao, 1975, etc]. A typical example of such matrices 
with appropriate properties is the family of Hadamard matrices. Rows of such matrices 
form an orthogonal system of functions Hadamard-Walsh, which is used for a spectral 
presentation and transfer of discrete signals [Ahmed, Rao, 1975; Geramita, 1979; 
Yarlagadda, Hershey, 1997]. 

The author investigates molecular structures of genetic code from the viewpoint of 
matrix methods of encoding and transfer of discrete signals. His results, which have 
been obtained in this original way, reveal hidden interconnections, symmetries and 
evolutionary invariants in genetic code systems [Petoukhov, 2001-2005; He, 
Petoukhov, Ricci, 2004]. Simultaneously they testify in a favor of that genetic 
molecules are important part of specific maintenance of noise immunity and efficiency 
of discrete information transfer. These molecular structures are related also with the 
general harmony of organism. 

A Hadamard matrix of dimension “n” is a square (n x n)-matrix H(n) with elements +1 
and -1; it satisfies to a condition H(n)*H(n)T = n*In , where H(n)T is the transposed 
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matrix and  In is the (n x n)-identity matrix. The Hadamard matrices of dimension 2k are 
given by the recursive formula H(2k) = H(2)(k) = H(2)�H(2k-1) for 2 d k�N, where � 
denotes the Kronecker product, brackets at exponent (k) mean the Kronecker 
exponentiation, k and N are integers, H(2) is demonstrated in Fig.1.  
 

    1 1 1 1     
 1 1  -1 1 -1 1   H(2k-1) H(2k-1) 

  H(2)= -1 1 ;  H(4)= -1 -1 1 1 ; … H(2k)=      -H(2k-1) H(2k-1) 
    1 -1 -1 1     

Figure 1: The family of Hadamard matrices H(2k) based on the Kronecker product. 

Rows of a Hadamard matrix are mutually orthogonal. This means that every two 
different rows in a Hadamard matrix represent two perpendicular vectors. The element 
“-1” can be disposed in any of four positions in the Hadamard matrix H(2) without a 
loss of main matrix  properties.  Such matrices are used in many fields due to their 
advantageous properties: in error-correcting codes such as the Reed-Muller code; in 
spectral analysis and multi-channels spectrometers with Hadamard transformations; in 
quantum computers with Hadamard gates (or logical operators), etc. The author 
revealed unexpectedly that Hadamard matrices reflect essential peculiarities of 
molecular genetic systems. 

MATRIX PRESENTATION OF GENETIC POLYPLETS BASED 
ON THE KRONECKER PRODUCT  

It is well-known, that polyplets are one of main peculiarities of genetic code. Really, the 
alphabet of genetic code is a set of four monoplets (nitrogenous bases): A (adenine), C 
(cytosine), G (Guanine), T/U (thymine in DNA or uracil in RNA); 64 triplets encode 
amino acids; each protein is encoded by more or less long polyplets (each protein with 
n amino acids is encoded by a 3n-plet). Due to the idea of a possible analogy between 
discrete signals processing in computers and in a genetic code system, the author has 
represented all sets of genetic polyplets as appropriate parts of a mutual family of 
symbolic square matrices (genomatrices) P(n), where  brackets at exponent (n) mean the 
Kronecker exponentiation [Petoukhov, 2001-2005].  

 
 

    CC CA AC AA 
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ɋ Ⱥ CT CG AT AG  
  Ɋ = T G 

;  Ɋ(2) = Ɋ�Ɋ = 
TC TA GC GA 

    TT TG GT GG 
 

 CCC CCA CAC CAA ACC ACA AAC AAA 

 CCT CCG CAT CAG ACT ACG AAT AAG 

 CTC CTA CGC CGA ATC ATA AGC AGA 

P(3) = CTT CTG CGT CGG ATT ATG AGT AGG 

 TCC TCA TAC TAA GCC GCA GAC GAA 

 TCT TCG TAT TAG GCT GCG GAT GAG 

 TTC TTA TGC TGA GTC GTA GGC GGA 

 TTT TTG TGT TGG GTT GTG GGT GGG 

Figure 2: The beginning of the family of symbolic genomatrices Ɋ(n)  for n = 1, 2, 3 . Here  (n) means the 
Kronecker exponentiation. This family is transformed into a family of Hadamard matrices from the viewpoint 

of essential parameters of nitrogenous bases (see below). 

The basic (2x2)-genomatrix P of this family (Fig. 2) is constructed from four letters A, 
C, G, T/U. Each genomatrix P(n) contains a complete set of n-plets as its matrix 
elements. For example, the (8x8)-genomatrix P(3) contains all 64 triplets which encode 
20 amino acids (for more details about this matrix presentation of genetic subsystems, 
see [Petoukhov, 2003, 2005]). 

This matrix representation of genetic polyplets seems to be adequate because of the 
following reasons: 

- It represents complete sets of n-plets in the universal mathematical form; 
- Each column in the matrix P(3) represents one of eight classical octets by   
   Wittmann [1961], which reflect real biochemical properties of triplets.  
- This representation has revealed unexpectedly a very symmetrical disposition  
   of 20 amino acids in the formal constructed genomatrix P(3) in the case of the   
   vertebrate mitochondria genetic code [Petoukhov, 2001, 2003] which is  
    considered mainly as the most ancient and “perfect” variant of  genetic code. 
- Moreover, this matrix representation has revealed a division of a set of 20 
amino acids into two important subsets: a subset of 8 high-degenerated amino 
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acids, which are encoded by 4 or more triplets, and a subset of 12 low-
degenerated amino acids, which are encoded by 3 or less triplets. This division 
into two subsets with 8 and 12 amino acids is an evolution invariant for the set 
of 20 amino acids according to investigation of quantities of low-degenerated 
and high-degenerated amino acids in all 17 variant of genetic codes which are 
known in modern science (see more details in [Petoukhov, 2001-2005]). 

To develop matrix analyses of genetic polyplets, one can investigate properties of the 
basic genomatrix P of four genetic letters more deeply. The modern science does not 
know why the alphabet of genetic language has four letters (it could have any other 
number of the letters in principle) and why just these four nitrogenous bases are chosen 
by nature as elements of the genetic alphabet from billions possible chemical 
compounds. In our opinion, this choice has a deep sense, and in this reason symmetric 
and asymmetric peculiarities of polyatomic constructions in the alphabetic system of 
four nitrogenous bases (Fig. 3) can give essential helps to reveal secrets of genetic code. 
Let us pay attention to these peculiarities.  

HADAMARD GENOMATRICES 

 It is known that amino-groups NH2 play an important role in molecular genetics. For 
instance, the amino-group in amino acids provides a function of recognition of this 
amino acid by ferment [Shapeville F., Haenni A.-L., 1974]. A detachment of amino-
groups in nitrogenous bases A and C in RNA under action of nitrous acid HNO2 
determines a property of amino-mutating of these bases, which was used to divide 64 
triplets in eight natural families with 8 triplets in each in the work mentioned above 
[Wittmann, 1961].  

But how the amino-groups are represented in genetic alphabets? One can note that each 
of three nitrogenous bases A, C, G has one amino-group (these groups are marked by 
circles in Fig. 3) and one base U/T has not it. This fact of existence or absence of 
amino-group in certain genetic letters can be represented in alphabetic genomatrix P by 
symbols “+1” and “-1” instead letters A, C, G and U/T correspondingly. In this case the 
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Figure3: Complementary pairs of four nitrogenous bases in DNA: A - T (adenine and thymine), C - G 
(cytosine and guanine). All amino-groups are marked by three big circumferences. Hydrogen bonds in 

complementary pairs are specified by dotted lines. Black small circles are atoms of carbon, small white circles 
- hydrogen, circles with the letter N - nitrogen, and circles with the letter O – oxygen. 

Hadamard genomatrix PH(2) = H(2) is appeared (Fig.1). It is obvious that all 
genomatrices PH(2)

(n) will be Hadamard matrices as well. One can suppose that 
Hadamard genomatrices can be used in genetic systems by analogy with applications of 
Hadamard matrices in different fields of science and technology generally speaking: 
discrete information processing, quantum computers, multi-channel spectrometers, 
error-correcting and other codes, etc. 

Simultaneously other facts can be noted about relations between genetic code system 
and Hadamard matrices. They are connected with a symmetrical disposition of 20 
amino acids in genomatrix P(3) of 64 triplets in the case of the vertebrate mitochondria 
genetic code [Petoukhov, 2001-2003], which is considered traditionally as the most 
ancient and “perfect” variant of  genetic code. P(3) was constructed above by means of 
the mathematical operation with the genomatrix P of the genetic alphabet  without a 
mention about amino acids at all. But unexpectedly the disposition of these 20 amino 
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acids in the genomatrix P(3) (Fig. 4, right) has demonstrated not only very symmetrical 
character, but relations with Hadamard matrices also. Let us show a few of these facts. 

Each sub-quadrant (2x2) of the matrix P(3) contains a subfamily of those four triplets, 
which are equivalent to each other by two first letters. Such quadruple of triplets will be 
named “a subfamily of NN-triplets”. A complete set of 16 subfamilies of NN-triplets is 
segregated by the nature into two subsets with 8 subfamilies in each. The first subset, 
marked by dark on Fig. 4, contains those subfamilies of NN-triplets, coded values of 
which are independent of their third letter. In this reason, all four triplets of such 
subfamily encode the same amino acids. On the contrary, the second subset, marked by 
white color, contains those subfamilies of NN-triplets, coded values of which are 
dependent of their third letter. In this reason, each such subfamily has triplets, which 
encode different amino acids or stop-signals. 

A disposition of these “black” and “white” subfamilies of NN-triplets in the matrix P(3) 
is very symmetric. For instance, left and right halves of this matrix are mirror-anti-
symmetric to each other in its colors: any pair of cells, disposed by mirror-symmetrical 
manner in these halves, has opposite colors. Diagonal quadrants of the matrix are 
equivalent to each other from the viewpoint of their mosaic. The rows 1-2, 3-4, 5-6, 7-8 
are equivalent to each other from the viewpoint of a disposition of the same amino acids 
in their appropriate cells, etc. From the set of 20 amino acids, 8 amino acids (Ala, Arg, 
Gly, Leu, Pro, Ser, Thr, Val) belong to the “black” sub-families of NN-triplets and 
other 12 amino acids (Asn, Asp, Cys, Gln, Glu, His, Ile, Lys, Met, Phe, Trp, Tyr) are 
presented in the “white” sub-families. These two subsets of amino acids are 
evolutionary invariant practically in relation to 17 variants of genetic codes, which are 
known in modern science (see details in [Petoukhov, 2001-2005]. 

Fig.4, left demonstrates the black-and-white genomatrix P(2) of 16 duplets, where black 
(white) cells correspond to those duplets, two letters of which are the beginning of 
appropriate black (white) families of NN-triplets of the genomatrix P(3) on Fig.4, right.  

One can consider that each black (white) cell of matrices in Fig.4 is equal to +1 (-1). In 
this case many relations between these genomatrices and Hadamard matrices can be 
demonstrated. Firstly, each black-and-white row in these both matrices correspond to an 
appropriate Rademacker function, which are connected with Hadamard-Walsh 
functions of Hadamard matrices (see [Ahmed, Rao, 1975] about Rademacker functions 
and their connections with rows of Hadamard matrices). Each quadrant (2x2) of the 
genomatrix (4x4) in Fig.4 is identical to an appropriate Hadamard matrix (2x2).  
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     CCC 
PRO 

CCA 
PRO 

CAC 
HIS 

CAA 
GLN 

ACC 
THR 

ACA 
THR 

AAC 
ASN 

AAA 
LYS 

     CCU 
PRO 

CCG 
PRO 

CAU 
HIS 

CAG 
GLN 

ACU 
THR 

ACG 
THR 

AAU 
ASN 

AAG 
LYS 

CC CA AC AA  CUC 
LEU 

CUA 
LEU 

CGC 
ARG 

CGA 
ARG

AUC 
ILE 

AUA 
MET 

AGC 
SER 

AGA 
STOP 

CU CG AU AG  CUU 
LEU 

CUG 
LEU 

CGU 
ARG 

CGG 
ARG

AUU 
ILE 

AUG 
MET 

AGU 
SER 

AGG 
STOP 

UC UA GC GA ; UCC 
SER 

UCA 
SER 

UAC 
TYR 

UAA 
STOP 

GCC 
ALA 

GCA 
ALA 

GAC 
ASP 

GAA 
GLU 

UU UG GU GG  UCU
SER 

UCG 
SER 

UAU 
TYR 

UAG 
STOP 

GCU 
ALA 

GCG 
ALA 

GAU 
ASP 

GAG 
GLU 

     UUC 
PHE 

UUA 
LEU 

UGC 
CYS 

UGA 
TRP 

GUC 
VAL 

GUA 
VAL 

GGC 
GLY 

GGA 
GLY 

     UUU 
PHE 

UUG 
LEU 

UGU 
CYS 

UGG 
TRP 

GUU
VAL 

GUG 
VAL 

GGU 
GLY 

GGG 
GLY 

Figure 4: Right: a representation of the genomatrix P(3) of 64 triplets for a case of the vertebrate mitochondria 
genetic code. The matrix consists of 64 triplets and 20 amino acids with their traditional abbreviations. Stop-
codons are marked as “stop”. Left: a representation of the appropriate genomatrix P(2) of 16 duplets. 

Both matrices in Fig. 4 are become Hadamard matrices as a whole by means of the 
following simple algorithm, which is connected with the special value “-1” of the letter 
T, mentioned above (see comment to the Fig. 3): each duplet or triplet in the black-and-
white genomatrices of Fig.4 should change its color into opposite color each time when 
the letter T stands in an odd position (in the first or in the third position) inside such 
polyplet. For example, the triplet TTA, which is in the white cell of the genomatrix P(3) 
in Fig. 4, is disposed in the black cell in Fig. 5 because of the letter T in its first 
position. Or the triplet TTT, which is in the white cell of the genomatrix P(3) in Fig. 4, is 
disposed in the white cell in Fig. 5 because of the letter T in its first and third positions 
(the color of this triplet is changed twice according to the described algorithm). The 
triplet ACG does not change its color because the letter T is absent in this triplet at all, 
etc.  

One can check that both matrices in Fig. 5 satisfy to the general condition of Hadamard 
matrices H(n)*H(n)T = n*In , mentioned above. Application of the same algorithm to 
the Hadamard matrices from Fig. 5 transfers them into the mosaic genomatrices of Fig. 
4. 

Each (2x2)-quadrant (or sub-quadrant) of these matrices in Fig.5 is a Hadamard matrix 
(2x2) as well. Each quadrant (4x4) in the matrix (8x8) in Fig.5 is a Hadamard matrix 
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also (this situation can be named “Hadamard fractals” conditionally). It means that the 
complete genomatrices of duplets and triplets in Fig. 5 consist of smaller Hadamard 
matrices inserted into them. Perhaps described algorithm of sign inversion is connected 
with a biological mechanism of a mutual change of the letters U and T in a course of 
transition of genetic sequences from RNA to DNA. 

 
    CCC CCA CAC CAA ACC ACA AAC AAA 
    CCT CCG CAT CAG ACT ACG AAT AAG 

CC CA AC AA CTC CTA CGC CGA ATC ATA AGC AGA 
CT CG AT AG CTT CTG CGT CGG ATT ATG AGT AGG 
TC TA GC GA ; TCC TCA TAC TAA GCC GCA GAC GAA 
TT TG GT GG TCT TCG TAT TAG GCT GCG GAT GAG 

    TTC TTA TGC TGA GTC GTA GGC GGA 
    TTT TTG TGT TGG GTT GTG GGT GGG 

Figure 5: Two Hadamard matrices, which are received algorithmically from appropriate genomatrices of Fig. 
4. Black (white) cells are equal to +1 (-1) in a traditional presentation of Hadamard matrices (explanation in 

the text). 

In Fig. 5 one can note additionally that the right matrix (8x8) can be obtained from the left matrix (4x4) by a 
substitution of Hadamard matrix H(2) (see Fig.1) into all black cells of the matrix (4x4) and a simultaneous 
substitution of inverted Hadamard matrix  “-H(2)” into all white cells of the same matrix. 

Rows of Hadamard matrices represent orthogonal systems of Hadamard-Walsh 
functions. Such orthogonal system can be a natural base to organize storage and transfer 
of discrete genetic information by means of decomposition of genetic sequences with 
these orthogonal systems and by means of using of orthogonal and bi-orthogonal codes. 
Genetic molecules are objects of quantum mechanics, where normalized Hadamard 
matrices play important role as unitary operators (it is known that an evolution of closed 
quantum system is described by unitary transformation). In particularly, quantum 
computers use these matrices as Hadamard gates (logical operators, Hadamard element, 
etc.) [Nielsen M.A., Chuang I.L., 2001]. In this connection new theoretical possibilities 
are appeared to transfer achievements of quantum computer conceptions into the field 
of molecular genetics and to consider genetic system as a quantum computer.  

From the viewpoint of significance of quantum mechanics and its unitary operators, 
first of all, Hadamard operators, a possible answer on a fundamental question about 
reasons for the nature to choose four-letters genetic alphabet is the following one: the 
important reason is that simplest unitary matrices in two-dimensional space, first of all, 
Hadamard matrices (and also Pauli matrices, etc.) consist of four elements exactly. It 
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seems very probably that principles of quantum mechanics and quantum computers 
underlie structural peculiarities of genetic code. 

It is essential that orthogonal systems of Hadamard-Walsh functions are also revealed 
by a few authors in macro-physiological systems (visual systems and others) which 
should be agreed structurally with genetic system for transferring along a chain of 
generations [Shiozaki, 1980; Carl J.V., 1974; Ginsburg A.P. et all, 1974; etc.].   

This article presents only a few revealed facts of realization of Hadamard genomatrices 
on the base of natural parameters of molecular-genetic system. On the whole they 
testify that many of advantages of Hadamard matrices, which are used widely in many 
fields of science and technology, can be exploited generally speaking in genetic system 
and processes of biological self-organization, for example, for spectral analysis of 
genetic sequences and genetic role of emission spectrums of genetic elements. 
Described facts are valuable arguments that polyatomic peculiarities of genetic letters 
are chosen by the nature to provide reliability and effectiveness of heredity information 
transfer by those methods which use Hadamard matrices and spectral presentation of 
discrete information signal. 

It should be noted that Hadamard genomatrices are appeared not only if one takes the 
case of an attribute of “existence or absence of amino-group” in nitrogenous bases. Ha-
damard genomatrices are appeared also if one takes into account an attribute of “exis-
tence or absence of oxygen atoms” in nitrogenous bases: adenine A has not such atom 
and other three nitrogenous bases have them (Fig.3). Hadamard matrices are appeared 
in DNA also in the case of an attribute “existence or absence of five atoms of carbon” 
because only cytosine C has not them. It seems that described facts are connected 
additionally with an actual theme of DNA computers [Bebenson, Shapiro, 2006]. 

By the way, one can note that black-and-white genomatrix (4x4) on Fig. 4 has an identi-
cal mosaic for each pair of quadrants (2x2) along matrix diagonals. This non-orthogonal 
genomatrix can be represented as a sum of two orthogonal matrices, each of which is 
named “uncontrolled gate” in the field of quantum computers due to their special 
meaning (http://en.wikipedia.org/wiki/Quantum_gate): 

 
 

+1 -1 +1 -1  +1 -1 0 0  0 0 +1 -
1 
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+1 +1 -1 -1  +1 +1 0 0  0 0 -1 -
1 

+1 -1 +1 -1 = 0 0 +1 -1 + +1 -
1 

0 0 

-1 -1 +1 +1  0 0 +1 +1  -1 -
1 

0 0 

Figure 6: A representation of non-orthogonal genomatrix from Fig.4 as a sum of two orthogonal matrices. 

QUINT GENOMATRICES  

The described family of Hadamard genomatrices is a particular case of a family of 
genomatrices P(n) mentioned above. What types of numerical matrices are appeared if 
one takes other essential parameters of nitrogenous bases to install them into P(n) ?  

Each pair of complementary nitrogenous bases has special number of hydrogen bonds, 
which were suspected in their important information meaning long ago: C and G have 3 
hydrogen bonds, A and T have 2 ones. If we replace each genetic letter in alphabetic 
genomatrix P by the numbers of its hydrogen bonds (C=G=3, A=U=2), we receive a 
numeric genomatrix PMULT (Fig.2) and a corresponding family of genomatrices PMULT

(n). 
Fig. 7 demonstrates the matrices PMULT and PMULT

(3).  
 

    27 18 18 12 18 12 12 8 

    18 27 12 18 12 18 8 12 

    18 12 27 18 12 8 18 12 

 3 2  12 18 18 27 8 12 12 18 
PMULT = 2 3 ;  PMULT

(3) = 18 12 12 8 27 18 18 12 
    12 18 8 12 18 27 12 18 

    12 8 18 12 18 12 27 18 

    8 12 12 18 12 18 18 27 

Figure 7: The numeric genomatrices PMULT
(1)

  and PMULT
(3) as the representatives of the family of quint  

genomatrices PMULT
(n). 

The bisymmetric genomatrices PMULT
(n) have interesting mathematical properties 

[Petoukhov, 2001-2005]. This article takes into account only one of them. Each 
genomatrix of the family PMULT

(n) has the ratio 3:2 at different levels: between numerical 
sums in top and bottom quadrants, sub-quadrants, sub-sub-quadrants, etc. including 
quint ratios between neighbor numbers in them. For example, PMULT

(3) contains 4 
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numbers – 27, 18, 12, 8 - with the quint ratio between them: 27/18=18/12=12/8=3/2. 
The ratio 3:2 is named the quint (or the perfect fifth) in a theory of musical harmony. In 
this reason described genomatrices PMULT

(n) are named “quint genomatrices” 
conditionally. 

Each quint genomatrix PMULT
(n) contains (n+1) kinds of numbers from a geometrical 

progression, factor of which is equal to the quint 3/2 [Petoukhov, 2003-04, tables 9-11]: 
 PMULT

(1) �      3,    2 
 PMULT

(2) �      9,    6,     4 
 PMULT

(3)) �    27,  18,   12,    8      (1) 
…………………………………………. 
 PMULT

(6) �  729,  486,  324,  216,  144,  96,  64                                                                
……………………………………………………..      

In other words, such sequences reproduce quint scales which were known previously in 
theory of musical harmony (first of all, in Pythagorean musical scale and in old Chinese 
music scale [Needham, 1962]).  

The four numbers 8=2*2*2, 12=2*2*3, 18=2*3*3, 27=3*3*3, which are presented in 
the genomatrix PMULT

(3) on Fig. 7, characterize those four kinds of triplets, which are 
differed by their numbers of hydrogen bonds of nitrogenous bases. For instance, 
number 18=2*3*3 belongs to those triplets, which have one nitrogenous base with 2 
hydrogen bond and two bases with 3 hydrogen bonds (mathematics of genomatrices is 
testify in a favor of that products of numbers of hydrogen bonds should be taken into 
attention here but not their sums; it has precedents and the justification in information 
theories, in particular, in the theory of parallel channels of encoding and processing of 
the information). Each gene and each part of DNA have their own numerical sequences 
of such numbers 8, 12, 18, 27 of triplets with the quint relation between them. This fact 
is a part of author’s materials about “music of genetic information” or “genomusic” 
mentioned in his previous publications [Petoukhov, 1999; 2001a, pp.43, 224, 225; 
2001b]. Now the author conducts experiments about a possible physiological activity of 
acoustical sequences of musical sounds which are constructed artificially by means of 
computer on the base of appropriate numerical sequences of numbers 8, 12, 18, 27 of 
triplets along genes. He creates a computer bank of such “music” sequences of genes 
and proteins for theoretical and practical needs now. 

The author notes a symmetrological fact also that the quint is the typical ratio for two 
other important parameters of DNA, which form their own quint sequences along DNA: 
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- Pyrimidines C and T have 40 protons in their rings; purines A and G have 60 
protons in their rings [Petoukhov, 1999]. (Each complementary pair has 100 
protons in their rings precisely). The ratio 60:40 is equal to the quint 3:2. 
- Quantity of non-hydrogen atoms in molecular rings of pyrimidines C and T is 
equal to 6, and quantity of non-hydrogen atoms in molecular rings of purines 
A and G is equal to 9. The ratio 9:6 is equal to the quint 3:2. 

Special families of quint genomatrices by analogy with P(n) can be founded for these 
parameters easily.  

All physiological systems should be coordinated structurally with genetic code for their 
encoding and transfer to next generations and for a survival in a course of biological 
evolution. In this reason we collect examples of the quint (and other main harmonic 
ratios) in structures and functions of supra-molecular biological systems. For example, 
the quint 3:2 exists between:     

- durations of phases of activity and rest in a cardio-cycle  
  (0.6 sec and 0.4 sec correspondingly); 
 - plasmatic and globular volumes of blood (60% and 40%); 
 - albumens   and   globulins   of   blood      (60% and 40%). 

Let us say one additional remark. If one takes into account that the nitrogenous base 
T/U can be characterized by number “-1” because it has no amino-group (see the first 
part of this article and Fig.3) then another family of numerical genomatrices TMULT

(n) is 
appeared from genomatrices P(n) (Fig. 8), where the letter T from the matrix P is 
symbolized by number “-2”. Rows of T(n) are mutually orthogonal and, from theoretical 
viewpoint, this matrix can be used in principle in discrete signals processing to increase 
reliability and effectiveness of discrete signals transfer by means of a spectral 
presentation of signals, etc.  

THE MATHEMATICAL SCALE OF THE GOLDEN WURF 

Quint genomatrices PMULT
(n) have a hidden relation with the famous golden section ĳ = 

(1+50.5)/2 = 1,618… [Petoukhov, 2001b]. If we take the square root from any 
genomatrix PMULT 

(n) in ordinary sense, the result is a bi-symmetric matrix ĭMULT
(n) = 

(ɊMULT
(n))1/2, the elements of which are equal to the golden section ĳ in different integer 

powers (Fig. 9). In this reason they are named the golden genomatrices. 
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    27 18 18 12 18 12 12 8 
    -18 27 -12 18 -12 18 -8 12 
    -18 -12 27 18 -12 -8 18 12 
 3 2  12 -18 -18 27 8 -12 -12 18 

TMULT   = -2 3 ; TMULT
(3) = -18 -12 -12 -8 27 18 18 12 

    12 -18 8 -12 -18 27 -12 18 
    12 8 -18 -12 -18 -12 27 18 
    -8 12 12 -18 12 -18 -18 27 

Figure 8: The numeric genomatrices TMULT and TMULT
(3) as the representatives of the family of quint  

genomatrices TMULT
(n) with mutually orthogonal rows (explanation in the text). 

 

    ĳ3 ĳ1 ĳ1 ĳ-1 ĳ1 ĳ-1 ĳ-1 ĳ-3

    ĳ1 ĳ3 ĳ-1 ĳ 1 ĳ-1 ĳ1 ĳ-3 ĳ-1

    ĳ1 ĳ-1 ĳ3 ĳ 1 ĳ-1 ĳ-3 ĳ1 ĳ-1

ĳ ĳ-1 ĳ-1 ĳ1 ĳ1 ĳ 3 ĳ-3 ĳ-1 ĳ-1 ĳ1 
(PMULT)1/2  
= ĭMULT  

ĳ-1 ĳ 
; (PMULT

(3)
 )1/2   

  = ĭMULT
(3) =

ĳ1 ĳ-1 ĳ-1 ĳ-3 ĳ3 ĳ1 ĳ1 ĳ-1

    ĳ-1 ĳ1 ĳ-3 ĳ-1 ĳ1 ĳ3 ĳ-1 ĳ1

    ĳ-1 ĳ-3 ĳ1 ĳ-1 ĳ1 ĳ-1 ĳ3 ĳ1

    ĳ-3 ĳ-1 ĳ-1 ĳ 1 ĳ-1 ĳ1 ĳ1 ĳ3

Figure 9: The numeric genomatrices ĭMULT and ĭMULT
(3) as the representatives of the family of  the golden 

genomatrices ĭMULT
(n).   

For instance, Fig. 9 demonstrates the matrix ĭMULT
(3) = (ɊMULT

(n))1/2. This matrix has 
only two pairs of inverse numbers: ĳ1 and ĳ-1, ĳ3 and ĳ-3. The golden section ĳ is a 
mathematical symbol of a self-reproduction for many centuries. It is well known that 
the golden section is shown in different physiological systems: cardio-vascular systems, 
respiratory systems, electric activities of brain, locomotion activity, etc. The discovered 
matrix relation between the golden section ĳ and basic parameters of genetic codes 
testifies into a favor of a molecular-genetic providing such physiological phenomena. 

This fact of close formal connection between genomatrices and the golden section 
seems to be interesting additionally from the viewpoint of an actual problem of genetic 
bases of aesthetics and inborn feeling of harmony additionally. According to words by 
famous physicist Richard Feynman about feeling of musical harmony, "we may 
question whether we are any better off than Pythagoras in understanding why only 
certain sounds are pleasant to our ear. The general theory of aesthetics is probably no 
further advanced now than in the time of Pythagoras" [Feynman, 1963, Chapter 50]. 
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Just as a quint genomatrix PMULT 
(n) contains a sequence (1) of (n+1)-kinds of numbers 

from a geometrical progression with the quint coefficient 3/2, a corresponding golden 
genomatrix ĭ(n) contains a sequence of (n+1)-kinds of numbers from a geometric 
progression, the coefficient of which is equal to ĳ2 = 2,618….: 

ĭ(1)   �   ĳ1,   ĳ-1

ĭ(2)   �   ĳ2,   ĳ0,   ĳ-2

ĭ(3)   �   ĳ3,   ĳ1,   ĳ-1,  ĳ-3       (2) 
………… 

The journal “Symmetry; Culture and Science” considers traditionally how methods and 
algorithms of symmetry permit to reveal structural analogies in different fields of 
science and culture. It is known that quint sequences (1) lead by means of a special 
algorithm to a construction of the Pythagorean musical scale which is a set of special 
tone-intervals and semitone-intervals (two kinds of frequency ratios 9/8 and 256/243 
between adjacent musical notes) inside one octave (for example see [Hightower; Pont; 
Voloshinov, 2000]). One can show that the same Pythagorean algorithm permits to get 
new interesting mathematical scale from the new sequences (2). This new scale is 
similar to the Pythagorean musical scale with small structural differences. It is 
interesting from the viewpoint of the theory of musical harmony. 

More precisely, a known algorithm of creation of a sequence of interval coefficients of 
Pythagorean musical scale consists of the following stages: 

 
1. Construction of the first members of geometrical progression with the 

quint coefficient 3/2 beginning from inverse value of the quint: (3/2)-

1: 2/3, 1, 3/2, 9/4, 27/8, 81/16, 243/32, … ;  
2. Transference of values of all these members into a base octave (with 

values from 1 to 2) by means of their division or multiplication with 
octave number 2 the necessary number of times (two members - 1 and 
3/2 – of the sequences lay inside of an octave initially because the 
coefficient 3/2 less than 2). As a result of this operation, a new 
sequence is appeared (this sequence can be named "a geometrical 
progression with return into an octave "): 4/3, 1, 3/2, 9/8, 27/16, 
81/64, 243/128...; 

3. Rearrangement of first seven members of this sequence according to 
their increasing values from 1 to 2 (ends of an octave 1 and 2 are 
included in this sequence): 



 MATRIX PRESENTATIONS OF MOLECULAR GENETIC SYSTEMS  261 

                   1, 9/8, 81/64, 4/3, 3/2, 27/16, 243/128, 2                                             (3) 

In this sequence, a ratio of greater number to the neighbor smaller number refers to as 
interval factor. Two kinds of interval factors exist in this sequence only: 9/8, which is 
named tone-interval T, and 256/243, which is named semitone-interval S.  A sequence 
of interval factors in (3) is T-T-S-T-T-T-S. These five tone-intervals and two semitone-
intervals cover an octave precisely: (9/8)5 * (256/243)2 = 2. 

Let us construct a new mathematical scale by means of this algorithm, using (instead of 
the quint coefficient 3/2) a coefficient p = ĳ2/2. From the viewpoint of construction of 
“a geometrical progression with return into an octave”, this coefficient p is equivalent to 
a coefficient ĳ2. This is so, because the coefficient ĳ2 is more than 2 and in this reason it 
should be divided by 2 to return into the main octave interval from 1 to 2 according to 
ordinary Pythagorean rule. In this case the coefficient p and the quint 3/2 belong both to 
this main octave interval. All three stages of the Pythagorean algorithm are reproduced: 
 

1. A sequence of the first members of a geometrical progression with a 
coefficient   p = ĳ2/2, is: ɪ-1, ɪ0, ɪ, ɪ2, ɪ3, ɪ4, ɪ5, ɪ6, ,… 

 
2. A sequence with returned members into the base octave by means of 

their division or multiplication with 2 the necessary number of times: 
(1/p)*2 ; ɪ0, ɪ, p2, p3/2, p4/2, ɪ5/2, p6/4, …  

3. Rearrangement of first members of this sequence according to their 
increasing values from 1 to 2 (ends of an octave 1 and 2 are included 
in this sequence): 

                   1,  p3/2,  p6/4,  ɪ,  p4/2,  (1/p)*2,  p2,  p5/2,  2                                      (4) 

Two kinds of interval factors exist in this sequence (4) only: p3/2 = 1.1215… (new tone-
interval) and 4*ɪ-5 = 1.0407… (new semitone-interval). Tone-interval is repeated 5 
times and semitone interval – 3 times; they cover an octave precisely: (p3/2)5 * (4*ɪ-5)3 
= 2. The condition of precise covering of octave by means of two kinds of interval 
factors was the main one to choice the first eight members of a considered geometrical 
progression. (8, 5 and 3 are Fibonacci numbers; an interesting connection between 
sequences, produced by this algorithm, however Fibonacci numbers are out of the scope 
of this article). 
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Fig. 10 demonstrates a minimal difference between sequences of interval factors inside 
one octave in the both scales. The first half of sequences coincides completely, but an 
additional semitone-interval is appeared in the second half of new scale. This additional 
semitone-interval exists due to the fact that the coefficient p=1.309… is less than the 
quint 3/2. 

 
7-steps Pythagorean scale of C 
major  

1 1 1/
2 

1  1 1 1/
2 

8-steps scale of the golden wurf 1 1 1/
2 

1 1/
2 

1 1 1/
2 

 
Figure 10: Sequences of interval factors in considered mathematical scales.  
Tone-intervals are marked by 1, semitone-intervals – 1/2.  

It should be noted that the base coefficient ĳ2/2 = ɪ is known in bio-morphology under 
the name “the golden wurf” (a wurf or a double ratio is the main invariant of projective 
geometry; it is interesting that finite projective-geometric plane is connected with 
Hadamard matrices considered in the first part of this article [Sachkov, 1982]). The 
notion "wurf" is known in the field of non-Euclidian geometries for a long time; its 
translation from German language means "throw". The golden wurf was introduced in 
works [Petoukhov, 1981, 1989] which were devoted to non-Euclidean bio-symmetries. 
The golden wurf has a status of ontogenetic and phylogenetic invariant of aggregated 
proportions of three-component kinematical blocks of human and animal bodies. The 
value of the golden wurf concerns acoustic perception also: the human ear cochlea 
consists of three patterns (three coils of a spiral), the ratios of whose lengths form a 
geometrical progression with the golden section as a coefficient (Fig. 11). The double 
ratio of these three lengths is equal to the golden wurf: p = ĳ2/2 = 1.309…  [Petoukhov, 
1989].  
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Figure 11: The helical structure of the human ear cochlea (from [Cook, 1914]) with a projective geometry 
proportion of the golden wurf: a – cochlea, coiled into a helix; b – cochlea uncoiled into a straight line.  

Due to this name of the coefficient ɪ = ĳ2/2, the whole described mathematical scale is 
named “the scale of the golden wurf”. Using of a sequence (4) of tone-intervals, the 
author constructs a sequence of tones (musical notes), which can be named “wurf-scale 
of C major” by analogy with Pythagorean scale of C major (Fig. 12). A choice of 
frequencies of these tones of the first octave is made in such way that this scale contains 
a frequency 440 Hz which corresponds to note “la” in Pythagorean scale and in equal 
temperament scale and which is used traditionally for tuning in musical instruments. 
Fig. 12 compares Pythagorean 7-steps scale C major and 8-steps scale of the golden 
wurf (or briefly, wurf-scale) for the first octave. Taking into account a minimal 
difference between both scales, the majority of notes of the wurf-scale are named by 
analogy with appropriate notes of Pythagorean scale but with the letter “m” in the end 
(for instance, "rem" instead "re"). An additional fifth note is named “pim”. 

 
Pyth 260.74 

Do1

293.33 
Re 

330 
Mi 

347.65 
Fa 

 391.11 
Sol 

440 
La 

495.00 
Si 

521.48 
Do2

wurf 256.78 
Dom1 

 

287.98 
Rem 

 

322.98 
Mim 

 

336.13 
Fam 

 

376.98 
Pim 

 

392.32 
Solm 

 

440 
Lam 

493.47 
Sim 

 

513.56 
Dom2

 

Figure 12:  The upper row “Pyth” demonstrates frequencies of tones in 7-steps Pythagorean scale of C major 
in the first octave. The bottom row „Wurf” demonstrates frequencies of tones in 8-steps scale of the golden 
wurf of C major in the similar octave. Numbers mean frequencies in Hz. Names of notes are given.    
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The scale of the golden wurf has many analogies with Pythagorean scale in its 
symmetries and proportions. The main difference is connected with irrational values of 
interval factors in the wurf-scale (irrational values are used in classical equal-
temperament scale also). Additional details about the mathematical scale of the golden 
wurf, its musical meaning and possible physiological applications, its proportions and 
its connection with Fibonacci numbers will be published specially. 

A history of attempts of a creation of new musical scales knows many famous authors: 
J.Kepler, R.Descartes, G.Leibniz, L.Euler, etc. But they didn’t use analogies with 
structures of genetic code for such aim. This part of the article describes a new attempt 
to improve knowledge about possible musical scales with a physiological meaning. 

HARMONICAL RATIOS AND CRYSTALS  

Many authors compare a living substance to crystals. For instance, E. Schrodinger 
named it aperiodic crystal. Do annals of modern science contain any data about a 
connection between music harmony and crystals? Yes, certain data exist and they have 
a long history. For example, they were collected by famous Russian crystallographer 
I.I.Shafranovskiy (for example, see [Berger, 1997, p.270-281]). Below we describe a 
few examples from this collection. 

 In 1818, C.S. Weiss, who has discovered crystallographic systems and who was one of 
founders of crystallography, has emphasized a musical analogy in crystallographic 
systems. He investigated ratios among segments, which are formed by faces of crystals 
of the cubic system. Weiss has shown that these ratios are identical absolutely to ratios 
between musical tones. 

In 1829, J. Grassman, who has written a known book “Zur physischen Kristallonomie 
und geometrishen Combinationslehre” and has developed many mathematic methods in 
crystallography, has noted impressive musical analogies in the field of crystallography. 
The speech is about many analogies described by him between ratios of musical tones 
and segments, formed by faces of the same zone of crystals. According to his figurative 
expression, “crystal polyhedron is a fallen asleep chord - a chord of the molecular 
fluctuations made in time of its formation”. 

In the end of 1890th years the outstanding crystallographer V. Goldschmidt has 
returned to the same ideas. The prominent Russian mineralogist and geochemist 
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A.E.Fersman wrote about his thematic publications: “These works represent the 
historical page in crystallography, which has lead Goldschmidt to revealing by him laws 
of harmonic ratios. Goldschmidt has extended these laws logically from the world of 
crystals into the world of other correlations in the regions of paints, colors, sounds and 
even biological correlations. It has become one of the most favorite themes of 
philosophical researches by Goldschmidt” (from [Berger, 1997, p.270]). This list of 
historical examples can be continued including the work [Shafranovskiy, 1986], etc.  

CONCLUSION 

Described materials permit to study symmetrical and structural peculiarities of 
interrelated genetic code systems from a system viewpoint due to their presentation as 
parts of the mutual family of special matrices. Simultaneously this way permits to apply 
in this molecular-genetic field ideas and methods from a few modern sciences: digital 
signal processing, spectral theory, unitary operators of quantum mechanics, quantum 
computers, theory of musical harmony, etc. 

Described researches were made by the author in the frame of a long-term cooperation 
between Russian and Hungarian Academies of Sciences. The author is grateful to 
Frolov K.V., Darvas Gy., Bohm J., Ne’eman Y., He M., Kovacs K., Smolianinov V.V., 
Vladimirov Y.S. for their support of these investigations. 
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