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Abstract - The article is devoted to algebraic features of 
structural phenomena of molecular ensembles of the genetic 
code. Matrix forms of presentations of the genetic code 
allow showing deep relations of the genetic code with dyadic 
shifts and algebras of 8-dimensional hypercomplex 
numbers. Hadamard matrices and orthogonal systems of 
Rademacher and Walsh functions, which are well-known 
formalisms from discrete signal processing, participate in 
this discovery of hidden structural features of the genetic 
code. The described results are useful to understand a non-
casual character of the genetic code systems, which has a 
deep algebraic nature. The results lead to new theoretical 
approaches in the field of algebraic biology.  
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1 Introduction 
 biological meaning of genetic informatics is reflected 

in the brief statement: "life is a partnership between 
genes and mathematics" [22]. We are trying to find 

math which is a partner of the genetic code. One of the 

possible directions of search is to use matrix forms of 

presentation and analysis of ensembles of molecular 

elements of the genetic code. Matrix representations and 

methods are widely and successfully used in the theory of 

error-correcting coding and processing of information, 

theoretical physics, computer science, the theory of 

hypercomplex numbers, etc. In this regard, a scientific field 

called "Matrix genetics" exists, which studies the matrix 

presentation of the genetic code, including through 

borrowing matrix methods from the field of digital signal 

processing [10, 11, 14, 15, 17]. Our results are a part of 

"algebraic biology", which gave rise to thematic conferences 

and international societies; the journal “Bulletin of 

Mathematical Biology” identifies this area as a separate 

category. 

This article is devoted to author’s results on algebraic 

features of structural phenomena of molecular ensembles of 

the genetic code. More precisely it shows relations of the 

genetic code with dyadic shifts, algebras of 8-dimensional 

hypercomplex numbers, Hadamard matrices, orthogonal 

systems of Rademacher and Walsh functions and the 

sequency theory by Harmuth [6-9].  

 

 Symbols of a genetic letter from a 
viewpoint of binary-opposite attributes 

C A G U/T 
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2 Genetic matrices, dyadic shifts, 
Rademacher functions and            
8-dimensional hypercomplex numbers 
 

The four letters of the genetic alphabet A (adenine), C 

(cytosine), G (guanine), U/T (uracil in RNA or thymine in 

DNA) represent specific poly-atomic constructions. The set 

of these four constructions bears the substantial symmetric 

system of distinctive-uniting attributes (or, more precisely, 

pairs of "attribute-antiattribute"). The system of such 

attributes divides the genetic four-letter alphabet into the 

following three pairs of letters, which are equivalent from a 

viewpoint of one of these attributes or its absence: 1) ɋ = U 

& A = G (according to the binary-opposite attributes: 

“pyrimidine” or “non-pyrimidine”, that is purine); 2) Ⱥ = ɋ 

& G = U (according to the attributes “keto” or “amino”);           

3) ɋ = G & Ⱥ = U (according to the attributes: three or two 

hydrogen bonds are materialized in these complementary 

pairs). The possibility of such division of the genetic 

alphabet into three binary sub-alphabets is known from the 

work [12]. We utilize these known sub-alphabets in the field 

of matrix genetics which studies matrix forms of 

presentation of the genetic code. Let us mark these three 

kinds of binary-opposite attributes by numbers N = 1, 2, 3 

and ascribe to each of the four genetic letters the symbol 

“0N” (the symbol “1N”) in a case of presence (of absence 

correspondingly) of the attribute under number “N” in this 

letter. As a result we obtain the representation of the genetic 

four-letter alphabet in the system of its three “binary sub-

alphabets corresponding to attributes” (Fig. 1). 

ʋ1 
01 – pyrimidines (one ring in a molecule); 

11 – purines (two rings in a  molecule) 01 11 11 01 

ʋ2 
02 – amino; 

12 – keto 02 02 12 12 

ʋ3
03 – a letter with three hydrogen bonds; 

13 – a letter with two hydrogen bonds 03 13 03 13

Fig. 1. Three binary sub-alphabets according to three kinds of 

binary-opposite attributes in a set of nitrogenous bases C, A, G, U. 

 

On the basis of the idea about a possible analogy between 

discrete signals processing in computers and in a genetic 

code system, one can present the genetic 4-letter alphabet in 

the following matrix form [C  A; U  G] (Fig. 2). Then the 

Kronecker family of matrices with such alphabetical kernel 

can be considered: [C  A; U  G]
(n)

, where (n) means the 

integer Kronecker (or tensor) power [11, 14, 15, 17]. The 

matrix [C  A; U  G]
(3)

 contains 64 triplets in a strict order 

(Fig. 2).  
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[C A; U G] 

= 

 
0 

C 
0 

A 
1 

 
1 

U 
1 

G 
0 

 
   000 (0) 001 (1) 010 (2) 011 (3) 100 (4) 101 (5) 110 (6) 111 (7) 

  000 
(0) 

CCC 
000 (0) 

CCA 
001 (1) 

CAC 
010 (2) 

CAA 
011 (3) 

ACC 
100 (4) 

ACA 
101 (5) 

AAC 
110 (6) 

AAA 
111 (7) 

  001 
(1) 

CCU 
001 (1) 

CCG 
000 (0) 

CAU 
011 (3) 

CAG 
010 (2) 

ACU 
101 (5) 

ACG 
100 (4) 

AAU 
111 (7) 

AAG 
110 (6) 

  010 
(2) 

CUC 
010 (2) 

CUA 
011 (3) 

CGC 
000 (0) 

CGA 
001 (1) 

AUC 
110 (6) 

AUA 
111 (7) 

AGC 
100 (4) 

AGA 
101 (5) 

  011 
(3) 

CUU 
011 (3) 

CUG 
010 (2) 

CGU 
001 (1) 

CGG 
000 (0) 

AUU 
111 (7) 

AUG 
110 (6) 

AGU 
101 (5) 

AGG 
100 (4) 

  [C A; U G](3) = 100 
(4) 

UCC 
100 (4) 

UCA 
101 (5)) 

UAC 
110 (6) 

UAA 
111 (7) 

GCC 
000 (0) 

GCA 
001 (1) 

GAC 
010 (2) 

GAA 
011 (3) 

  101 
(5) 

UCU 
101 (5) 

UCG 
100 (4) 

UAU 
111 (7) 

UAG 
110 (6) 

GCU 
001 (1) 

GCG 
000 (0) 

GAU 
011 (3) 

GAG 
010 (2) 

  110 
(6) 

UUC 
110 (6) 

UUA 
111 (7) 

UGC 
100 (4) 

UGA 
101 (5) 

GUC 
010 (2) 

GUA 
011 (3) 

GGC 
000 (0) 

GGA 
001 (1) 

  111 
(7) 

UUU 
111 (7) 

UUG 
110 (6) 

UGU 
101 (5) 

UGG 
100 (4) 

GUU 
011 (3) 

GUG 
010 (2) 

GGU 
001 (1) 

GGG 
000 (0) 

  
Fig. 2. Genetic matrices [C A; U G] and [C A; U G]

(3)
 with 

binary numerations of  their columns and rows on the base of the 

binary sub-alphabets ʋ 1 and ʋ 2 from Fig. 1. Matrix cells 

contain a symbol of a multiplet, a dyadic-shift numeration of this 

multiplet and its expression in decimal notation. Decimal 

numerations of columns, rows and multiplets are written in 

brackets. Black and white cells contain triplets with strong and 

weak roots correspondingly (see the text). 

 

All the columns and rows of the matrices on Fig. 2 are 

binary numerated and disposed in a monotonic order by the 

following algorithm which uses biochemical features of the 

genetic nitrogenous bases and which can be used in bio-

computers of any organism really. Numerations of columns 

and rows are formed automatically if one interprets 

multiplets of each column from the viewpoint of the first 

binary sub-alphabet (Fig. 1) and if one interprets multiplets 

of each row from the viewpoint of the second binary sub-

alphabet. For example, the column 010 contains all the 

triplets of the form "pyrimidine-purine-pyrimidine"; the row 

010 contains all the triplets of the form “amino-keto-amino”. 

Each of the triplets in the matrix [C A; U G]
(3)

 receives its 

dyadic-shift  numeration by means of modulo-2 addition of 

binary numerations of its column and row. Here one should 

explain that this kind of addition is one of the main 

operations in digital signal processing; by definition the 

modulo-2 addition of two numbers written in binary notation 

is made in a bitwise manner in accordance with the 

following rules: 

                 0 + 0 = 0, 0 + 1 = 1, 1+ 0 = 1, 1+ 1 = 0             (1) 

 

For example, the triplet CAG receives its dyadic-shift 

numeration 010 (or 2 in decimal notation) because it belongs 

to the column 011 and the row 001. The series of binary 

numbers 

                 000, 001, 010, 011, 100, 101, 110, 111             (2) 

 

forms a diadic group, in which modulo-2 addition serves as 

the group operation [9]. The distance in this symmetry group 

is known as the Hamming distance. Since the Hamming 

distance satisfies the conditions of a metric group, the diadic 

group is a metric group. The modulo-2 addition of any two 

binary numbers from (2) always results in a new number 

from the same series. The number 000 serves as the unit 

element of this group. The reverse element for any number 

in this group is the number itself. Changes in the initial 

binary sequence (2), produced by modulo-2 addition of its 

members with any binary numbers (2), are termed diadic 

shifts [1, 9]. If any system of elements demonstrates its 

connection with diadic shifts, it indicates that the structural 

organization of its system is related to the logic of modulo-2 

addition. This article gives some evidences that the genetic 

code is related to the logic of modulo-2 addition. 

Black and white cells in the genomatrix [C A; U G]
(3)

 

reflect the following peculiarities of the genetic code. A 

combination of letters on the two first positions of each 

triplet is termed a “root” of this triplet; a letter on its third 

position is termed a “suffix”. The set of 64 triplets contains 

16 possible variants of such roots. Taking into account 

properties of triplets, the set of 16 possible roots is divided 

into two subsets with 8 roots in each. The first of such octets 

contains roots CC, CU, CG, AC, UC, GC, GU, GG. These 

roots are termed "strong roots" [13] because each of them 

defines four triplets with this root, coding values of which 

are independent on their suffix. For example, four triplets 

CGC, CGA, CGU, CGG, which have the strong root CG, 

encode the same amino acid Arg, although they have 

different suffixes (Fig. 3). The second octet contains roots 

CA, AA, AU, AG, UA, UU, UG, GA. These roots are 

termed “weak roots” because each of them defines four 

triplets with this root, coding values of which depend on 

their suffix. An example of such a subfamily in Fig. 3 is 

represented by four triplets CAC, CAA, CAU and CAC, two 

of which (CAC, CAU) encode the amino acid His and the 

other two of which (CAA, CAG) encode the amino acid 

Gln. 

 
THE STANDARD CODE 

8 subfamilies of triplets with strong 

roots (“black triplets”) and the amino 

acids, which are encoded by them 

8 subfamilies of triplets with weal roots (“white 

triplets”) and the amino acids, which are encoded 

by them 

CCC, CCU, CCA, CCG  Î Pro CAC, CAU, CAA, CAG Î   His, His, Gln, Gln 

CUC, CUU, CUA, CUG Î Leu  AAC, AAU, AAA, AAG Î Asn, Asn, Lys, Lys 

CGC, CGU, CGA, CGG Î Arg   AUC, AUU, AUA, AUG Î  Ile, Ile, Ile, Met 

ACC, ACU, ACA, ACG Î Thr AGC, AGU, AGA, AGG Î  Ser, Ser, Arg, Arg 

UCC, UCU, UCA, UCG Î Ser  UAC, UAU, UAA, UAG Î  Tyr, Tyr, Stop, Stop 

GCC, GCU, GCA, GCG Î Ala UUC, UUU, UUA, UUG Î  Phe, Phe, Leu, Leu 

GUC, GUU, GUA, GUG Î Val  UGC, UGU, UGA, UGG Î   Cys, Cys, Stop, Trp

GGC, GGU, GGA, GGG Î Gly GAC, GAU, GAA, GAG Î  Asp, Asp, Glu, Glu 

THE VERTEBRATE MITOCHONDRIAL CODE 
CCC, CCU, CCA,  CCG Î Pro CAC, CAU, CAA, CAG  Î   His, His, Gln, Gln 

CUC, CUU, CUA,  CUG Î Leu  AAC, AAU, AAA, AAG  Î  Asn, Asn, Lys, Lys 

CGC, CGU, CGA,  CGG Î Arg AUC, AUU, AUA, AUG  Î  Ile, Ile, Met, Met 

ACC, ACU, ACA,  ACG Î Thr AGC, AGU, AGA, AGG  Î  Ser, Ser, Stop, Stop 

UCC, UCU, UCA,  UCG Î Ser UAC, UAU, UAA, UAG  Î  Tyr, Tyr, Stop, Stop 

GCC, GCU, GCA, GCG Î Ala UUC, UUU, UUA, UUG  Î  Phe, Phe, Leu, Leu 

GUC, GUU, GUA, GUG Î Val UGC, UGU, UGA, UGG  Î  Cys, Cys, Trp, Trp 

GGC, GGU, GGA, GGG Î Gly GAC, GAU, GAA, GAG  Î  Asp, Asp, Glu, Glu 

 
Fig. 3. The Standard Code and the Vertebrate Mitochondrial Code 

possess the basic scheme of the genetic code degeneracy with 32 

triplets of strong roots and 32 triplets of weak roots (Initial data 

from http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi.) 
 

How these two subsets of triplets with strong and weak 

roots are disposed in the genomatrix [C A; U G]
(3) 

(Fig. 2) 

which was constructed formally on the base of the genetic 

alphabet and Kronecher multiplications without any mention 

about the degeneracy of the genetic code and about amino 

acids? Can one anticipate any symmetry in their disposition? 

It should be noted that the huge quantity 64! § 10
89

 of 

variants exists for dispositions of 64 triplets in the (8x8)-

matrix. One can note for comparison, that the modern 



 

 

 

physics estimates time of existence of the Universe in 10
17

 

seconds. In such a situation an accidental disposition of the 

20 amino acids and the corresponding triplets in a (8x8)-

matrix will give almost never any symmetry in their 

disposition in matrix halves, quadrants and rows. 

But it is phenomenological fact that the disposition of the 

32 triplets with strong roots (“black triplets” in Fig. 2) and 

the 32 triplets with weak roots (“white triplets”) has a 

symmetric character unexpectedly (see Fig. 2). For example 

the left and right halves of the matrix mosaic are mirror-anti-

symmetric to each other in its colors: any pair of cells, 

disposed by mirror-symmetrical manner in these halves, 

possesses the opposite colors. One can say that each row of 

this mosaic matrix corresponds to an odd function. In 

addition each row of the mosaic matrix [C A; U G]
(3)

 has a 

meander-line character (the term “meander-line” means here 

that lengths of black and white fragments are equal to each 

other along each row). But the theory of discrete signal 

processing uses such odd meander functions for a long time 

under the name “Rademacher functions”. Rademacher 

functions contain elements “+1” and “-1” only. Each of the 

matrix rows presents one of the Rademacher functions if 

each black (white) cell is interpreted such that it contains the 

number +1 (í1). Fig. 4 shows a transformation of the mosaic 

matrix [C A; U G]
(3)

 (Fig. 2) into a numeric matrix in the 

result of such replacements of black and white triplets by 

means of numbers “+1” and “-1” correspondingly. 

 

1� 1� í1� í1� 1� 1� í1� í1�  

1� 1� í1� í1� 1� 1� í1� í1�  

1� 1� 1� 1� í1� í1� í1� í1�  

1� 1� 1� 1� í1� í1� í1� í1�  

1� 1� í1� í1� 1� 1� í1� í1�  

1� 1� í1� í1� 1� 1� í1� í1�  

í1� í1� í1� í1� 1� 1� 1� 1�  

í1� í1� í1� í1� 1� 1� 1� 1�  

�

 
Fig. 4. Rademacher form R of presentation of the genomatrix [C A; 

U G]
(3) 

from Fig. 2. A relevant system of Rademacher functions is 

shown at the right side. 

 

The Rademacher form R of the genomatrix [C A; U G]
(3)

 

(Fig. 4) can be decomposed into sum of 8 sparse matrices r0, 

r1, r2, r3, r4, r5, r6, r7 (Fig. 5) in accordance with the principle 

of dyadic-shifts numerations of cells and triplets from Fig. 2. 

More precisely any sparse matrix rk (k=0, 1, …, 7) contains 

entries “+1” or ”-1” from the matrix R on Fig. 4 in those 

cells which correspond to cells with the same dyadic-shift 

numeration “k”  of triplets on Fig. 2; all the other cells of the 

matrix rk contain zero. 

The author has revealed that this set of 8 matrices     

r0, r1,…, r7 (where r0 is identity matrix) is closed relative to 

multiplication and it satisfies the table of multiplication on 

Fig. 6. 

            

The multiplication table on Fig. 6 is asymmetrical relative 

to the main diagonal and corresponds to the non-

commutative associative algebra of 8-dimensional 

hypercomplex numbers. This matrix algebra is non-division 

algebra because it has zero divisors. It means that such non-

zero hypercomplex numbers exist whose product is equal to 

zero. These genetic 8-dimensional hypercomplex numbers 

are different from Cayley’s octonions 

(http://en.wikipedia.org/wiki/Octonion). The algebra of 

Cayley’s octonions is non-associative algebra and 

correspondingly it does not possess a matrix form of its 

presentation (each of matrix algebras is an associative 

algebra). The known term “octonions” is not appropriate for 

the case of the multiplication table on Fig. 6 because this 

term is usually used for members of normed division non-

associative algebra (http://en.wikipedia.org/wiki/Octonion).  

 

R = r0+r1+r2+r3+r4+r5+r6+r7 = 
1   0   0   0   0   0   0   0 

0   1   0   0   0   0   0   0 

 0   0   1   0   0   0   0   0

 0   0   0   1   0   0   0   0

 0   0   0   0   1   0   0   0

 0   0   0   0   0   1   0   0

 0   0   0   0   0   0   1   0

 0   0   0   0   0   0   0   1

 

 

 

+

0  1  0  0  0  0  0  0 

1  0  0  0  0  0  0  0 

0  0  0  1  0  0  0  0 

0  0  1  0  0  0  0  0 

0  0  0  0  0  1  0  0 

0  0  0  0  1  0  0  0 

0  0  0  0  0  0  0  1 

0  0  0  0 0  0  1  0

 

 

 

+ 

0   0   -1   0    0   0   0   0 

0   0    0   -1   0   0   0   0 

1   0    0    0    0   0   0   0 

0   1    0    0    0   0   0   0 

0   0    0    0    0   0  -1   0 

0   0    0    0    0   0   0  -1 

0   0    0    0    1   0   0    0 

0   0   0    0    0   1   0    0 

 

 

 

+ 

0   0   0   -1   0   0   0   0 

0   0  -1    0   0   0   0   0 

0   1   0     0   0   0   0   0 

1   0   0     0   0   0   0   0 

0   0   0     0   0   0   0  -1 

0   0   0     0   0   0  -1   0 

0   0   0     0   0   1   0   0 

0  0    0    0   1    0   0   0

 

 

 

 

+ 

 

0   0   0   0  1   0   0   0 

0   0   0   0  0   1   0   0 

0   0   0   0  0   0  -1  0 

0   0   0   0  0   0   0  -1 

1   0   0   0  0   0   0   0 

0   1   0   0  0   0   0   0 

0   0  -1  0  0   0   0   0 

0   0  0 -1  0   0   0   0

 

 

 

+

0   0   0   0   0   1   0   0 

0   0   0   0   1   0   0   0 

0   0   0   0   0   0   0  -1 

0   0   0   0   0   0  -1  0 

0   1   0   0   0   0   0  0 

1   0   0   0   0   0   0  0 

0   0   0  -1  0   0   0  0 

0   0  -1  0  0   0   0   0

 

 

 

+ 

0   0   0   0   0   0   -1   0 

0   0   0   0   0   0    0   -1 

0   0   0   0  -1   0   0    0 

0   0   0   0   0  -1   0    0 

0   0  -1   0  0   0    0    0 

0   0   0  -1  0   0    0    0 

-1  0  0   0   0   0    0    0 

0  -1  0   0   0   0   0     0 

 

 

 

+

0   0   0   0   0   0   0   -1 

0   0   0   0   0   0  -1   0 

0   0   0   0   0  -1   0   0 

0   0   0   0  -1   0   0   0 

0   0   0  -1   0   0   0   0 

0   0  -1   0   0   0   0   0 

0  -1   0   0   0   0   0   0 

-1  0   0   0   0   0   0   0

 

 Fig. 5. The dyadic-shift decomposition of the Rademacher form R 

(Fig. 4) of the genomatrix [C A; U G]
(3)

 into sum of 8 sparse 

matrices r0, r1,…, r7.  

 

 1 r1 r2 r3 r4 r5 r6 r7

1 1 r1 r2 r3 r4 r5 r6 r7

r1 r1 1 r3 r2 r5 r4 r7 r6

r2 r2 r3 -1 -r1 -r6 -r7 r4 r5

r3 r3 r2 -r1 -1 -r7 -r6 r5 r4

r4 r4 r5 r6 r7 1 r1 r2 r3

r5 r5 r4 r7 r6 r1 1 r3 r2

r6 r6 r7 -r4 -r5 -r2 -r3 1 r1

r7 r7 r6 -r5 -r4 -r3 -r2 r1 1 
 

 Fig. 6. The multiplication table of basic matrices r0, r1,… , r7 

(where r0 is identity matrix)  which corresponds to the                    

8-dimensional algebra over the field of real numbers. It defines the 

8-dimensional numeric system of genetic R123-octetons. 
 

For this reason we term these hypercomplex numbers, 

which are revealed in matrix genetics, as “dyadic-shift 

genetic octetons” (or briefly “octetons”). In addition we term 

such kinds of matrix algebras, which are connected with 

dyadic-shift decompositions, as dyadic-shift algebras (or 

briefly DS-algebras). The author supposes that DS-algebras 

are important for genetic systems. All the basic matrices r0, 

r1,…, r7 are disposed in the multiplication table (Fig. 6) in 

accordance with dyadic-shift numerations of cells on Fig. 2.  

Below we will describe another variant of genetic 

octetons which is connected with Hadamard genomatrices. 

For this reason we term the first type of genooctetons (Fig. 

4-6) as R123-octetons (here R is the first letter of the name 

Rademacher; the index 123 means the order 1-2-3 of 

positions in triplets).  

A general form of R123-octetons (Fig. 5) is the following: 

 

            R123 = x0*1 + x1*r1 + x2*r2 + x3*r3 + x4*r4 +  

                       x5*r5 + x6*r6 + x7*r7                                       (4) 

       

where coefficients x0, x1,.. , x7 are real numbers. Here the 

first component x0 is a scalar. Other 7 components x1*r1, 

http://en.wikipedia.org/wiki/Octonion
http://en.wikipedia.org/wiki/Octonion


 

 

 

x2*r2, x3*r3, x4*r4, x5*r5, x6*r6, x7*r7 are non-scalar units 

but imaginary units. Some properties of these octetons lead 

to the idea that for a system of genetic coding the main 

significance belong not to the entire set of possible real 

values of coordinates of 8-dimensional hypercomplex 

numbers but only to the subset of numbers  2
0
, 2

1
, 2

2
,.., 2

n
,.. 

[16].  It seems that for genetic systems DS-algebras are 

algebras of dichotomous biological processes. 

3 Permutations and the DS-algebra 
The theory of discrete signal processing pays a special 

attention to permutations of information elements. This 

paragraph shows that all the possible permutations of 

positions inside all the triplets lead to new mosaic 

genomatrices whose Rademacher forms of presentation are 

connected with the same DS-algebra (Fig. 6).   

A simultaneous permutation of positions in triplets 

transforms the most of the triplets in cells of the initial 

genomatrix [C A; U G]
(3)

. For example, in the case of the 

cyclic transformation of the order 1-2-3 of positions into the 

order 2-3-1, the triplet CAG is transformed into the triplet 

AGC, etc. Because each of the triplets is connected with the 

binary numeration of its column and row, these binary 

numerations are also transformed correspondingly; for 

example, the binary numeration 011 is transformed into 110. 

The six variants of the order of positions inside triplets are 

possible: 1-2-3, 2-3-1, 3-1-2, 3-2-1, 2-1-3, 1-3-2. The initial 

genomatrix [C A; U G]123
(3)

 is related with the first of these 

orders (Fig. 4). Other five genomatrices [C A; U G]231
(3)

, 
    

[C A; U G]231
(3)

, 
 
[C A; U G]231

(3)
, 

 
[C A; U G]231

(3)
, [C A; U 

G]231
(3)

, which correspond to other five orders, are shown on 

Fig. 7 (subscripts indicate the order of positions in triplets). 

In these genomatrices on Fig. 7 black-and-white mosaics 

of each row corresponds again to one of Rademacher 

functions. The replacement of all the triplets with strong and 

weak roots by entries “+1” and “-1” correspondingly 

transforms these genomatrices into their Rademacher forms 

R231, R312, R321, R213, R132. Each of the Rademacher forms 

R231, R312, R321, R213, R132 can be again decomposed into sum 

of 8 sparse matrices r0, r1, r2, r3, r4, r5, r6, r7 in accordance 

with dyadic-shift numerations of its cells (see details in 

[16]). Each of the 6 sets with eight sparse matrices r0, r1, r2, 

r3, r4, r5, r6, r7 is unique and different from other sets (r0 is 

identity matrix in all the sets).  

Unexpected facts are that, firstly, each of these sets is 

closed relative multiplication and, secondly, each of these 

sets corresponds to the same multiplication table from Fig. 6.  

It means that this genetic DS-algebra of 8-dimensional 

hypercomplex numbers possesses at least 5 additional matrix 

forms of its presentation. Our results demonstrate that this 

DS-algebra of genetic R-octetons possesses a wonderful 

invariance relative not only to all the variants of positional 

permutations in triplets but also to some other permutations 

which are connected with Gray code and dyadic-shift 

transformations [16]. All the properties of R123-octetons hold 

true in the cases of different matrix forms of presentation of 

R-octetons with the same multiplication table (Fig. 6). 
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Fig. 7. Five genomatrices [C A; U G]231

(3)
, [C A; U G]312

(3)
,                          

[C A; U G]321
(3)

, [C A; U G]213
(3)

, 
 
[C A; U G]132

(3)
, 

 
which 

correspond to orders of positions in triplets 2-3-1, 3-1-2, 3-2-1, 2-1-

3, 1-3-2 relative to the genomatrix [C A; U G]123
(3)

 on Fig. 2. Black 

and white cells contain triplets with strong and weak roots 

correspondingly. Binary numerations of columns and rows are 

shown. 

 

The analysis of evolution of variants (or dialects) of the 

genetic code from the viewpoint of the DS-algebra of the R-

octetons has allowed revealing two phenomenological rules 

[16]: 

Rule #1. In all the organisms with sexual reproduction 

only those triplets can be involved in the evolutionary 

changing their correspondence to amino acids or to stop-

signals, which possess dyadic-shift numerations 4, 5, 6, 7 in 

the genomatrix [C A; U G]
(3) 

(Fig. 2); in other words, only 



 

 

 

those triplets can be involved which are connected with the 

basic matrices r4, r5, r6, r7 (Fig. 5) of genetic R-octetons. 

    Rule #2. In all the dialects of the genetic code only 

triplets with dyadic-shift numerations 2, 6, 7 can be start-

codons. In other words, only those triplets can be start-

codons, which are connected with the basic matrices r2, r6, r7 

(Fig. 5) of genetic R-octetons. 

4 Hadamard matrices and another                 
DS-algebra  

By definition a Hadamard matrix of dimension “n” is the 

(n*n)-matrix H(n) with elements “+1” and “-1”. It satisfies 

the condition H(n)*H(n)
T
 = n*In, where H(n)

T
 is the 

transposed matrix and In is the identity (n*n)-matrix. Rows 

of Hadamard matrices are termed Walsh functions. 

Hadamard matrices are widely used in error-correcting 

codes such as the Reed-Muller code and Hadamard codes; in 

the theory of compression of signals and images; in spectral 

analysis and multi-channel spectrometers with Hadamard 

transformations; in quantum computers with Hadamard 

gates; in a realization of Boolean functions by means of 

spectral methods; in the theory of planning of multiple-

factor experiments and in many other branches of science 

and technology. The works [10, 14, 15] have revealed that 

Kronecker families of genetic matrices are related with some 

kinds of Hadamard matrices (“Hadamard genomatrices”) by 

means of so termed                U-algorithm. This paragraph 

describes that the dyadic-shift decompositions of Hadamard 

genomatrices lead to special 8-dimensional hypercomplex 

numbers. For the U-algorithm, phenomenological facts are 

essential that the letter U in RNA (and correspondingly the 

letter T in DNA) is a unique letter in the genetic alphabet in 

the two following senses: 

x Each of three nitrogenous bases A, C, G has one 

amino-group NH2, but the fourth basis U/T has not 

it. From the viewpoint of existence of the amino-

group (which is very important for genetic 

functions) the letters A, C, G are identical to each 

other and the letter U is opposite to them; 

x The letter U is a single letter in RNA, which is 

replaced in DNA by another letter T.  
This uniqueness of the letter U can be utilized in genetic 

computers of organisms. Taking into account this unique 

status of the letter U, the author has revealed the existence of 

the following formal “U-algorithm”, which demonstrates the 

close connection between Hadamard matrices and the matrix 

mosaic of the genetic code [10, 14, 15, 17]. 

By definition the U-algorithm contains two steps: 1) on 

the first step, each of the triplets in the black-and-white 

genomatrix (for example, in the genomatrix [C A; U G]
(3)

 on 

Fig. 2) should change its own color into opposite color each 

time when the letter U stands in an odd position (in the first 

or in the third position) inside the triplet; 2) on the second 

step, black triplets and white triples are interpreted as entries 

“+1” and “-1” correspondingly. For example, the white 

triplet UUA (see Fig. 2) should become the black triplet (and 

its matrix cell should be marked by black color) because of 

the letter U in its first position; for this reason the triplet 

UUA is interpreted finally as “+1”. Or the white triplet UUU 

should not change its color because of the letter U in its first 

and third positions (the color of this triplet is changed twice 

according to the described algorithm); for this reason the 

triplet UUU is interpreted finally as “-1”.  
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Fig. 8. The Hadamard genomatrices H123, H231, H312, H321, H213, 

H132 which are received from the genomatrices [C A; U G]123
(3)

,   

[C A; U G]231
(3)

, [C A; U G]312
(3)

, [C A; U G]321
(3)

, [C A; U G]213
(3)

,  

[C A; U G]132
(3)

 (Fig. 2 and 7) by means of the U-algorithm. 

Brackets contain dyadic-shift numerations of cells in decimal 

notation by analogy with matrices on Fig. 2 and 8. Black color and 

white color of cells mean entries “+1” and “-1” in these cells 

correspondingly. 

 

By means of the U-algorithm, all the genomatrices              [C A; U 

G]123
(3)

, [C A; U G]231
(3)

, [C A; U G]312
(3)

,               [C A; U G]321
(3)

, 

[C A; U G]213
(3)

,  [C A; U G]132
(3)

 (Fig. 2 and 7) are transformed 

into relevant numeric genomatrices H123, H231, H312, H321, H213, 
H132 on Fig. 8. 

One can make the dyadic-shift decomposition of each of 

these six Hadamard genomatrices H123, H231, H312, H321, H213, 

H132 (Fig. 8) by analogy with the described decompositions 

of the genomatrices R123, R231, R312, R321, R213, R132. In the 

result six new different sets of 8 sparse matrices h0, h1, h2, 

h3, h4, h5, h6, h7 arise (where h0 is identity matrix). It is 

unexpectedly but each of these six sets for Hadamard 

genomatrices is closed relative to multiplication. Moreover 

each of these sets h0, h1, h2, h3, h4, h5, h6, h7 corresponds to 



 

 

 

the same multiplication table on Fig. 9 [16]. 

 

 1 h1 h2 h3 h4 h5 h6 h7 

1 1 h1 h2 h3 h4 h5 h6 h7 
h1 h1 -1 h3 -h2 h5 -h4 h7 -h6

h2 h2 h3 -1 -h1 -h6 -h7 h4 h5 
h3 h3 -h2 -h1 1 -h7 h6 h5 -h4

h4 h4 h5 h6 h7 -1 -h1 -h2 -h3

h5 h5 -h4 h7 -h6 -h1 1 -h3 h2 
h6 h6 h7 -h4 -h5 h2 h3 -1 -h1

h7 h7 -h6 -h5 h4 h3 -h2 -h1 1 
 

Fig. 9. The multiplication table for the dyadic-shift decompositions 

of Hadamard genomatrices H123, H231, H312, H321, H213, H132 (Fig. 

8). 

 

The existence of the multiplication table (Fig. 9) means 

that a new 8-dimensional DS-algebra or a new system of          

8-dimensional hypercomplex numbers exists on the base of 

these Hadamard genomatrices which are connected with six 

different matrix forms of presentation of this hypercomplex 

system. We term these new 8-dimensional hypercomplex 

numbers as H-octetons (here “H” is the first letter in the 

name Hadamard) because they differ from R-octetons (Fig.  

6) and Cayley’s octonions. The six Hadamard genomatrices 

H123, H231, H312, H321, H213, H132 are different matrix forms of 

presentation of the same H-octeton whose coordinates are 

equal to 1 (x0=x1=…=x7=1).  

     Numeric presentations of genetic sequences are useful to 

study hidden genetic regularities [3, 4, 44, 17, etc.]. On the 

base of the described results, new approaches of numeric 

presentations of genetic sequences can be proposed for such 

aims taking into account additionally known applications of 

hypercomplex numbers to analysis of genetic sequences [2, 

5, 20, 21, 23, etc.]. It seems appropriate to interpret genetic 

sequences as sequences of 8-dimensional vectors where 

genetic elements are replaced by their special numeric 

presentations which are connected with the described DS-

algebras. Then Hadamard spectrums, dyadic distances and 

some other characteristics of these vector sequences can be 

studied. If the quantity of vector elements in a genetic 

sequence is not divisible by 8, the remaining short vector 

can be extended to an 8-dimensional vector by adding to its 

end of the required number of zeros by analogy with 

methods of digital signal processing.  

The DS-algebra of H-octetons (Fig. 9) is the non-

commutative associative non-division algebra. It has zero 

divisors: for example (h3+h4) and (h2-h5) are non-zero H-

octetons, but their product is equal to zero. The quantity and 

the disposition of signs “+” and “-“ in the multiplication 

table on Fig. 9 are identical to their quantity and disposition 

in a Hadamard matrix. In addition, indexes of basic matrices 

are again disposed in the multiplication table (Fig. 9) in 

accordance with the dyadic-shift numeration on Fig. 2.  

It should be noted that Hadamard matrices play important 

roles in many tasks of discrete signal processing; they are 

devoted to tens of thousands of publications (see a review in 

[19]). Only a few symmetrical Hadamard matrices are 

usually used in the field of discrete signal processing. But 

dyadic-shift decompositions of these “engineering” 

Hadamard matrices do not lead to any 8-dimensional 

hypercomplex numbers in contrast to the asymmetrical 

Hadamard genomatrices described in our article. Moreover 

the author knows no publications about the facts that 

Hadamard matrices can be the base for matrix forms of 

presentation of 8-dimensional hypercomplex numbers. It 

seems that the genetic code has led the author to discovering 

the new interesting fact in the field of the theory of 

Hadamard matrices about the unexpected relation of some 

Hadamard matrices with multidimensional DS-algebras and 

their systems of hypercomplex numbers. This fact can be 

useful for many applications of Hadamard genomatrices for 

simulating of bioinformation phenomena, for technology of 

discrete signal processing, etc. A great number of Hadamard 

(8x8)-matrices exists (according to some experts, their 

number is equal to approximately 5 billion). Perhaps, only 

the genetic Hadamard matrices, which represent a small 

subset of a great set of all the Hadamard matrices, are related 

with multidimensional DS-algebras but it is an open 

question now.  

Why living nature uses just such the genetic code that is 

associated with Hadamard genomatrices? We suppose that 

its reason is related with solving in biological organisms the 

same information tasks which lead to a wide using of 

Hadamard matrices in digital signal processing and in 

physics.  
 

5 Discussion 
 

The author has revealed a close relation of the genetic 

code with 8-dimensional hypercomplex numbers (first of all, 

R-octetons and H-octetons) and with dyadic shifts and 

Hadamard matrices. This relation is interesting in many 

aspects. Some of them are the following. 

Walsh functions play the main role in the fruitful 

sequency theory by Harmuth for signal processing [6-9]. 

Rows of Hadamard genomatrices correspond to special 

kinds of Walsh functions which define special variants of 

sequency analysis. The author believes that this “genetic” 

sequency analysis can be a key to understand important 

features not only of genetic informatics but also of many 

other inherited physiological systems (morphogenetic, 

sensori-motor, etc.). In comparison with spectral analysis by 

means of sine waves, which is applicable to linear time-

invariant systems, the sequency analysis is based on non-

sinusoidal waves and it is used to study systems which are 

changed in time (biological systems belong to such systems) 

[7, 9]. Genetic DS-algebras can also be useful in a 

realization of the famous idea by Boole on algebraic theory 

of laws of thinking. The author believes that mechanisms of 

biological morphogenesis are closely associated with spatial 

and temporal filters from the field of sequency analysis for 

genetic systems. Taking into account the sequency theory by 

Harmuth together with our data about Hadamard 

genomatrices and genetic H-octetons, one can assume that 

biological evolution can be interpreted largely like the 

evolution of physiological spatial and temporal filters of the 

sequency theory.  

The notion “number” is the main notion of mathematics. 

In modern theoretical physics, systems of 8-dimensional 



 

 

 

hypercomplex numbers (mainly, Cayley’s octonions and 

split-octonions) are one of important objects. The discovery 

of the relation of the genetic code with special types of     

8-dimensional hypercomplex numbers allows generating of 

heuristic associations between theoretical physics and 

mathematical biology. The described DS-algebras can be 

useful for development of algebraic biology [16]. 

        

[9]  H. F. Harmuth, Information theory applied to space-
time physics. Washington: The Catholic University of 

America, DC, 1989. 

       Bioinformatics should solve many problems about 

inherited properties of biological bodies: 

x Noise-immunity property of genetic coding; 

x Management and synchronization of a huge number 

of inherited cyclic processes; 

x Doubling of bio-information (mitosis, etc); 

x Compression of inherited biological data; 

x Spatial and temporal filtering of genetic information; 

x Primary structure of proteins; 

x Multi-channel informatics; 

x Hidden rules of structural interrelations among parts 

of genetic systems; 

x Laws of evolution of dialects of the genetic code, 

etc.  

The principle of dyadic shifts and DS-algebras of genetic 

octetons can be useful for many of these problems.  

In addition, one can mention about known facts of 

analogies between the genetic code and the symbolic system 

of ancient Chinese book “I Ching” (see a review in [17]). 

This symbolic system is a base of many branches of Oriental 

medicine including acupuncture, Tibetan pulse diagnostics, 

etc. which use ancient ideas of "I Ching" about inherited 

physiological systems. Using dyadic shifts for studying not 

only the genetic code but also the mysterious tables of “I 

Ching” reveals the hidden regularities and symmetrical 

patterns in this ancient system [16]. Results of matrix 

genetics give new approaches for better understanding the “I 

Ching”. 
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