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A B S T R A C T

Biological symmetries, theories of the morphogenetic field, resonant interactions and the role of photons in
morphogenetic processes represented the main fields of interest of Lev Beloussov and his followers. This review
article includes some results of our study on the important role of resonances and photonic crystals in genetic
informatics. Mathematical formalisms of differential Riemannian geometry and tensor analysis are used for
modeling inherited curved surfaces in biomorphology and for understanding conformal bio-symmetries con-
nected with the networks of curvature lines of surfaces. Notions of a morpho-resonance field as one of variants of
morphogenetic fields are discussed. The connection of the golden section with the Fibonacci matrix of growth
used in morphogenetic models of phyllotaxis is shown. Photonic crystals are considered as important partici-
pants of organisation of molecular-genetic informatics.

1. Introduction

In studying the problems of morphogenesis, the phenomenon of
symmetries in biological bodies is traditionally assigned a prominent
place. Scientific interest in biosymmetries is based on the especially
important role of the concept of symmetry and the group-theoretical
approach in modern mathematical natural science. Besides all, “sym-
metry in the broad or narrow sense is the idea using which man has for
centuries tried to obtain an insight into and create order, beauty and per-
fection” (Weyl, 1952). Biological symmetry is embodies to a larger or
smaller degree in numerous biological theories, some highly con-
troversial: N.I. Vavilov's law of homological series; A.G. Gurwitsch’s
theory of the morphogenetic field (Beloussov, 1997); V.I. Vernadsky’s
theory of the non-Euclidean geometry of living matter; the diffusion
reaction model of morphogenesis, developed by A.M. Turing; self-or-
ganizing growing automata, whose theory is being developed by J. von
Neumann’s followers; morphogenetic mechanisms behind numerous
psychophysical phenomena including the esthetic preference of the
morphogenetically significant golden section, which is expressed by
Fibonacci numbers etc.

The morphological variability follows certain rules that can be
called nomothetical laws and analyzed as symmetrical transformations
(Meyen, 1973). The nomothetical laws and morphogenetic phenomena
are related with the known idea about existence of a morphogenetic
field, a possible nature and bases of which are discussed by many au-
thors (Beloussov, 1998, 2012, 2015; Igamberdiev, 2014; Meyen, 1973).

The article (Levine, 2011) describes a modern understanding of mor-
phogenetic fields as information-bearing global patterns in chemicoe-
lectrical properties that guide growth and form; it is «a profound unifying
concept central to biology and medicine».

This issue is dedicated to the memory of the remarkable embryol-
ogist Lev V. Beloussov, many of whose researches were devoted to the
systematic analysis of symmetries in embryological structures and
theories. His fundamental books (Beloussov, 1998, 2015) contain ex-
tensive material on this topic. In many of his works L.Beloussov con-
tinued study of morphogenetic phenomena in close connection with
approaches and the concept of the morphogenetic field developed by
famous Russian physiologist A.G. Gurwitsch, who was his grandfather.
Beloussov has organised special international conferences to develop
scientific achievements by Gurwitsch concerning, first of all, his con-
cept of the morphogenetic field, resonant coherent biosystems and also
the important role of photons in morphogenetic phenomena (Beloussov
et al., 2007). The same issues were intensively discussed at seminars on
problems of morphogenesis, conducted by L. Beloussov for many years
in Moscow. One of the authors of this article - Petoukhov - was lucky to
be a regular participant in these seminars, which had a significant in-
fluence on him.

Our article continues the theme of biological symmetries and me-
chanisms of morphogenesis in connection with the symmetric features
of the genetic coding system. Developing and supplementing some
ideas of L. Beloussov and A. Gurwitsch, this article pays a special at-
tention to the role of resonant interactions and photonic crystals in the
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development of model approaches to understanding inherited mor-
phogenetic structures. From the information standpoint, biological or-
ganisms are informational essences. They receive genetic information
from their ancestors and transmit it to descendants. Science has dis-
covered that all organisms are identical to each other by their basic
molecular-genetic structures. Due to this revolutionary discovery, a
great unification of all biological organisms has happened in science. A
new understanding of life itself has appeared: "life is a partnership be-
tween genes and mathematics" (Stewart, 1999).

Mathematical analysis of symmetrical structures and phenomena of
genetic systems have revealed their connections with matrix theory of
resonances in oscillatory systems having two and more degrees of
freedom. This had led to the concept of the resonance genetics and to
the idea of morphoresonance field (Petoukhov, 2015a, 2016). This ar-
ticle gives additional data to develop modeling approaches for under-
standing inherited morphogenetic phenomena taking into account the
works of Beloussov and Gurwitsch.

Informational genetic molecules DNA and RNA exist on principles of
quantum mechanics and quantum informatics, but they encode struc-
tures of living macro-organisms, which are subjects of classical me-
chanics. Mathematics of resonances of oscillatory systems is appro-
priate for quantum mechanics and classic mechanics since such
mathematics uses in both cases the same property of matrices to express
resonances. Morphogenesis is based on addition or subtraction of new
molecules in existing constructions by special interactions among mo-
lecules. Let us remind some known facts and data from physics about
the key role of resonances and photons in such molecular interactions.

2. On mathematics of resonances and their applications

The concept of resonances plays fundamental and interdisciplinary
role in science. In classic mechanics, the concept of resonances has wide
theoretical and engineering applications due to vibrational phenomena
of a resonant synchronization of oscillatory processes, vibrational se-
paration and structuring of multiphase systems, vibro-transportation of
substances, vibro-transmission of energy within systems, etc.
(Blekhman, 2000; Ganiev et al., 2015). Practically invisible vibrations
can provide, for example, the following phenomena: the upper position
of the inverted pendulum becomes stable; heavy metal ball “floats” in a
layer of sand; a rope takes a form of a vertical stem if a corresponding
vibration acts on its base. Inside fluids, vibrating bodies can attract or
repel each other (vibrating forces of Bjerknes) and pulsating gas bub-
bles may coalesce or divide.

Quantum mechanics has begun in 1900 due to works by M. Planck,
who has analyzed a great set of resonant oscillators inside the cavity
and in the result has received his famous law of electromagnetic ra-
diation emitted by a black body in thermal equilibrium. Later, after
more than 50 years of successful development of quantum mechanics,
E. Schrodinger emphasised the basic meaning of resonances: “The one
thing which one has to accept and which is the inalienable consequence of
the wave-equation as it is used in every problem, under the most various
forms, is this: that the interaction between two microscopic physical systems
is controlled by a peculiar law of resonance» (Schrödinger, 1952, p.115).
In considering an exact balance in nature between bundles of energy,
lost by one system and gained by another, he noted: «I maintain that it
can in all cases be understood as a resonance phenomenon» (Schrödinger,
1952, p.114). He wrote in his resonance concept of quantum interac-
tions, that chemical reactions, including photochemical reactions, can
be explained on the base of resonances. One of examples considered in
his article was a production of water molecules H2O from a suitable
mixture of hydrogen gas H2 and oxygen gas O2 under action of ultra-
violet light. In this example, “wave-mechanically the gaseous mixture is
represented by a vibration of the combined system, and, by the way, not by
one proper vibration since there is anyhow the vast variety of translational
and rotational modes, and, of course, the electronic modes. The gaseous
compound, H2O, is represented by an entirely different vibration of the same

system” (Schrödinger, 1952, p. 118).
His book (Schrödinger, 1944) said that the chromosome is an

aperiodic crystal since its atoms are connected each other by forces of
the same nature that atoms in crystals. But vibrations and resonances
play a very important role in physics of crystals and their morphological
structure. The interaction of atoms in the crystal lattice together with
the resonance phenomenon leads to the fact that oscillatory motions of
lattice elements are combined in a collective oscillation process in a
form of a wave propagating in the crystal. In the course of the normal
vibrations, all the atoms in the crystal lattice oscillate about their
equilibrium positions by harmonic law with the same frequency. As it is
known, in a quantum description of small oscillations of a crystal, it is
possible to interpreted normal fluctuations of the crystal as special
quasiparticles, which are quanta of the field of elastic vibrations of the
crystal and which are called phonons. The theory of phonons is one of
the bases of physics of crystals. We believe that a similar resonance
approach can usefully serve in morphogenetics.

L.Pauling used ideas of resonances in quantum mechanical systems
in his theory of resonance in structural chemistry. His book (Pauling,
1940) about this theory is the most quoted among scientific books of
the 20th century. The theory was developed to explain the formation of
hybrid bonds in molecules. The actual molecule, as Pauling proposed, is
a sort of hybrid, a structure that resonates between the two alternative
extremes; and whenever there is a resonance between the two forms,
the structure is stabilized. His theory uses the fundamental principle of
a minimal energy because – in resonant combining of parts into a single
unit – each of members of the ensemble requires less energy for per-
forming own work than when working individually. Of course, this
fundamental principle can be used in many other cases of resonances in
different systems as the physical base. The principle of energetic
minimum in resonance processes has some correlations with the prin-
ciple of relaxation in morphogenetic processes proposed in
(Igamberdiev, 2012). From the point of view of quantum mechanics,
the interaction of molecules is based on the emission and absorption of
photons with the participation of resonance correspondences.

The notion “resonance” was introduced into quantum mechanics by
W. Heisenberg in 1926 year in connection with analyzes of multi-body
systems. He emphasized that in quantum mechanics the phenomenon of
resonances has much more general character than in classical physics.
In classic theory, two periodic oscillating systems come into their own
resonance only in the case when a frequency of a separate sub-system
doesn’t depend on energy of the system and when this frequency is
approximately equal in both sub-systems. In quantum mechanics, two
atomic systems come into their resonance only in the case when a
frequency of absorption of one system coincides with a frequency of
emitting another system, or vice versa (Heisenberg, 1926, §2). Quan-
tized electromagnetic field is represented as a set of oscillators.

Further development of thoughts by Beloussov, Gurwitsch and other
researches about important role of resonances in biological phenomena
can be done on the basis of studing structural analogies between mor-
phogenetic phenomena and mathematical formalisms of the theory of
resonances. Mechanical and electrical oscillations in living bodies are
closely connected because many tissues are piezo-electrical (nucleic
acids, bone, actin, dentin, tendons, etc.). Mathematics of mechanical
and electrical oscillations is analogical (so called “electro-mechanical
analogies” are well-known). The articles (Petoukhov, 2015a, b, 2016;
Petoukhov, Petukhova, 2017) describe our concept about the important
role of resonances in genetic structures. This concept is based on im-
pressive analogies of some genetic structures, including Mendelian
laws, with eigenvalues and eigenvectors of tensor families of matrices
representing resonant characteristics of oscillatory systems with many
degrees of freedom (see about resonant characteristics in Gladwell
(2004)). For example, concerning Mendelian laws, known for a long
time Punnet squares for poly-hybrid crosses of organisms are identical
to the tensor inheritance for spectra of vibrosystems with appropriate
degrees of freedom (Petoukhov, 2016). The concept of resonance
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genetics draws attention to a possible value of phenomena of vibra-
tional mechanics in physiology with its complex phenomena of co-
ordinated actions of many parts, for example, within division of cells,
etc. For further parts of this article we should briefly recall the main
aspects of matrix representations of resonances in oscillatory systems.

Matrices possess a wonderful property to express resonances, which
sometimes is called as their main quality (Bellman, 1960; Balonin,
2000, p. 21, 26). Physical resonance phenomenon is familiar to ev-
eryone. The expression y=A*S models the transmission of a signal S
via an acoustic system A, represented by a relevant matrix A. If an input
signal is a resonant tone, then the output signal will repeat it with a
precision up to a scale factor y=A*S by analogy with a situation when
a musical string sounds in unison with the neighboring vibrating string.
In the case of a matrix A, its number of resonant tones Si corresponds to
its size. They are called its eigenvectors, and the scale factors λi with
them are called its eigenvalues or, briefly, spectrum A (see more details
in the special article in this journal Petoukhov (2016)). Each eigenvalue
of the vibration system matrix is equal to the square of the corre-
sponding resonant frequency. Frequencies ωi = λi

0.5 (Gladwell, 2004,
p. 61) are defined as natural frequencies of the system, and the corre-
sponding eigenvectors are defined as its own forms of oscillations (or
simply, natural oscillations). These free undamped oscillations occur in
the system in the absence of the friction forces in it and in the absence
of external excitation forces. Behavior of the system in conditions of
free oscillations determines by its behavior in many other conditions. In
this context, one of the main tasks of the theory of oscillations is a
determination of natural frequencies (mathematically, eigenvalues of
operators) and the natural forms of oscillations of bodies. To find all the
eigenvalues λi and eigenvectors of the matrix A, which are defined by
the matrix equation A*s = λ*s, the “characteristic equation” of the
matrix A is analyzed: det(A− λE)=0, where E – the identity matrix.
The characteristic equation together with its eigenvalues and eigen-
vectors is fundamental in the theory of mechanical, electrical and other
oscillations at macroscopic or microscopic levels. Not all square ma-
trices represent vibrational systems. Matrices, which are relevant to the
various problems of the theory of oscillations, are usually symmetrical
real matrices (Gladwell, 2004, p. 178). Such matrices have real eigen-
values and their eigenvectors are orthogonal.

Taking into account the important role of matrices in the theory of
resonances, as well as the supposed importance of resonances for the
genetic system, the scientific direction "matrix genetics" has been pro-
posed in Russia (Petoukhov, 2008) and is developing with the partici-
pation of scientists from different countries. Now let us describe some
new model approaches to use mathematical formalisms of the theory of
resonances in the field of morphogenesis phenomena.

3. Curved biological surfaces and the concept of resonant genetics

Morphogenetic processes on different lines and branches of biolo-
gical evolution sometimes demonstrate a surprising generality and
various types of symmetry, including non-Euclidean symmetries.
Examples of this generality are the law of homological series of N.I.
Vavilov and the phenomena of phyllotaxis. This Section is devoted to
using the notion of resonances of vibrational systems for modeling in-
herited curved surfaces on the basis of formalisms of differential
Riemannian geometry and tensor analysis.

A characteristic feature of inherited biological surfaces is their
curvilinear configurations, for example, curved surfaces of fruits,
shellfish shells, animal and plant bodies. From the standpoint of
mathematical modeling, this can be considered as inheritance of geo-
metric characteristics of curved surfaces. The life of organisms is largely
related to two-dimensional surfaces, for example, cell membrances and
embryonic sheets that give rise to different organs and tissues (https://
ru.wikipedia.org/wiki/Zerodyshevye_listki). In mathematics, curved
surfaces are studied by means of differential Riemannian geometry and
tensor analysis with using the key notion of the metric tensor (see, for

example, Dodson and Poston (1991); Gallot et al., 2004; Rashevsky,
1964). Such metric tensor defines a metric in an infinitesimal part of the
surface by specifying the distance between two of its infinitely close
elements. The specification of the system (or the "field") of metric
tensors on the surface determines its "internal" geometry, allowing it to
calculate the arc lengths, the angles between the curves, and the areas
of the regions on the surface, regardless of its spatial location. Therefore
it is natural to try to create a general theory of biological morphogen-
esis with the use of metric tensors.

By definition, the metric tensor in an n-dimensional affine space
with the introduced operation of scalar multiplication is given by a
nondegenerate symmetric matrix || gij ||, gij = gji (Rashevsky, 1964, p.
157). In Riemannian geometry, 2-dimensional curved surfaces are de-
scribed by means of metric tensors in their form of (2*2)-matrices. The
symmetric real matrices of vibration systems with two degress of
freedom satisfy to the definition of metric tensors and can be considered
as metric tensors (Petoukhov, 2015a, 2016). There is an isomorphism
between the set of (2*2)-matrices of vibrosystems and the set of metric
tensors of 2-dimensional curved surfaces: for each matrix of the first set
with its two orthogonal eigenvectors and two eigenvalues, there exists
the matrix of the second set with the same eigenvectors and eigenva-
lues. Due to this isomorphism, mathematical models of Riemannian
geometry for 2-dimensional curved surfaces of biological objects can be
interpreted on the basis of language of theory of resonances of vibra-
tional systems; the formal mathematical models obtain physical inter-
pretations for further researches. It is one of main objectives of our
study. More precisely, this isomorphism allows "encoding" or define
metric tensors of curved surfaces through similar matrices of vi-
brosistems with two degrees of freedom, that is by means of the re-
sonant frequencies of relevant vibration systems (the way of encoding
morphogeneses through the resonant frequencies of the vibration sys-
tems). We use this isomorphism to model biomorphologic surfaces from
the standpoint of the mentioned concept of resonance genetics. The
coordinates gij of a metric tensor are the pairwise scalar products of
reference vectors, on which it is constructed. If a square root is ex-
tracted from a symmetric matrix that is a metric tensor, then a new
symmetric matrix is obtained whose columns represent these reference
vectors (and which, in turn, can be treated as a new metric tensor).
From such standpoint, hierachial systems of metric tensors exist, which
can be considered as hierarchial systems of matrices of vibrational
systems. In order for a symmetric real matrix to be interpreted as a
tensor, it is necessary to specify the transformation group with respect
to which it acts as a tensor. For example, for symmetric (2*2)-matrices
considered in this paper, such a group is the group of rotations of the
plane (or a wider group of motion transformations), the transformations
of which leave the scalar products of the reference vectors invariable,
although the coordinates of the vectors themselves are changed under
these transformations.

Let us describe our model approach, which allows modeling curved
biological surfaces and their growth transformations in a unified
manner within the framework of the concept of resonant genetics. This
approach proceeds from the statement about the key role of the re-
sonant frequencies of vibration systems with two (and more) degrees of
freedom for the genetic inheritance of morphological surfaces and their
natural biological transformations. In this connection, this approach (or
theory) is conditionally called the morphoresonance approach. It uses
the isomorphism between the set of (2*2)- matrices of vibration systems
and the set of metric tensors of two-dimensional curved surfaces em-
bedded in a three-dimensional Euclidean space.

It is known that the metric tensor or metric at the point of the
surface is represented in the form of the so-called first quadratic form
from the differentials of the coordinates du, dv on the surface:

I= Edu2 + 2Fdudv+Gdv2, (1)

where E, F, G are the coefficients of the form (the limited volume of our
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article doesn't allow reproducing here well known details of this part of
Riemannian geometry, which are described, for example, in Dodson
and Poston (1991); Gallot et al. (2004); Rashevsky (1964)). According
to geometric meaning, this form coincides with the square of the ele-
ment of arc length of the curve on the surface. In the orthogonal co-
ordinate system (u, v) on the surface, the coefficient F=0, and the
expression of the form is simplified:

I= Edu2 + Gdv2, (2)

These coefficients E and G are the eigenvalues of the metric tensor
at a given point of the surface. They coincide with the eigenvalues of
some (2*2)-matrix of a vibration system with two degrees of freedom,
in view of the above isomorphism. Accordingly, these coefficients can
be encoded (set) by the resonant frequencies of this vibration system.

The first quadratic form of the surface defines its internal geometry,
but to characterize its curvature in space, the second quadratic form is
used:

II= Ldu2 + 2Mdudv+Ndv2, (3)

where L, M, N are the coefficients of this form. Its geometric meaning
lies in the fact that it characterizes the deviation of the surface from the
tangent plane at the point under consideration.

On curved surfaces there are many geometric types of lines: geo-
desic, asymptotic, etc. All of them can be analyzed to reveal their
possible connection with the ideas of morphogenetic resonances and
resonant genetics. But at the first stage of development of the mor-
phoresonance approach, the central attention is paid to the main lines
of curvature of surfaces. The network of these main lines of curvature
forms an orthogonal system, which is convenient to use as a coordinate
system. In construction mechanics, the theory of thin shells is created
precisely on local coordinate systems on the basis of these main lines of
curvature (Pogorelov, 2007, p. 162). We recall the information on
curvatures and main lines of curvature.

The ratio II/I of the second quadratic form to the first form is called
the normal curvature of the surface at a given point. It reaches its
maximum and minimum values of k1 and k2 in two orthogonal direc-
tions, called the principal (we do not consider the special points, at
which this value does not depend on the direction, for example, at
points in the plane or sphere). The line of curvature on the surface is
one that touches the principal direction at each of its points. If two
orthogonal families of lines of curvature are used as the system of co-
ordinate lines of the surface, the average coefficients of the first and
second quadratic forms are zero: F=M=0. The quantities of the
principal curvatures k1 and k2 in the point are calculated via the ratio of
the first and second quadratic forms from (2) and (3):

k1 = L/E, k2 = N/G (4)

The specification of two quadratic forms defines a curved smooth
surface. Of these, only the first form is positive definite and comparable
to the positively determined (2*2)-matrices of vibration systems for
specifing the internal geometry (ie, the metric) of the surface in this
model approach. The coefficients of the second quadratic form, which is
not positive definite in the general case, cannot be directly specified
(encoded) through the resonance frequencies of such vibration systems.
How, in our model approach, are the curvatures k1 and k2 connected
with resonance frequencies? The answer to this question is given by
expressions (4), in which these curvatures vary inversely under changes
of the E and G coefficients of the first quadratic form. In this case, one
can selectively change any of the curvatures by changing the resonance
frequency, which determines the value of the corresponding coefficient
of the first form. Indeed, under changes of the value of the resonance
frequency corresponding to the coefficient E (or G) in the indicated
matrix isomorphism, the curvature k1 (or k2) in the considered point of
the surface selectively changes in line with (4) (assuming that the be-
havior of L and N in the numerators of these expressions is not

significant). This resonance frequency of a vibration system with two
degrees of freedom acts as a physical regulator of curvature at the point
of the surface (given that the surface metric in a small neighborhood of
the point is determined at once by both resonant frequencies of the
given vibration system).

An effective theory of morphological surfaces should be able not
only to simulate static surfaces, but also the change of these surfaces in
the course of growth and other natural transformations, when - at every
moment of transformations - a new form is created that smoothly arises
from the previous in a regular way. Our proposed theoretical approach
is based on the supposition about the key role of resonant frequencies of
vibration systems with two (and more) degrees of freedom for the ge-
netic inheritance of morphologic surfaces and their natural biological
transformations (Petoukhov, 2015a, b, 2016). This morphoresonance
approach using the isomorphism between the set of (2*2)-matrices of
vibration systems and the set of metric tensors of two-dimensional
curved surfaces embedded in a three-dimensional Euclidean space. This
approach seems to be appropriate for modeling many morphogenetic
phenomena.

For an additional explanation of our approach, Fig. 1 shows ex-
amples of so called channel surfaces, which can be used for modeling
many biological objects: blood vessels, plant shoots, etc. In geometry,
channel surfaces are the surfaces formed by the motion of a circle of
variable radius, at which the center of the circle moves along a given
curve, and the plane of the circle remains perpendicular to this curve all
the time (see mathematical definitions and equations of different
channel surfaces in (Peternell and Pottmann (1997); https://en.
wikipedia.org/wiki/Channel_surface). For channel surfaces, the gen-
erating circles are the main curvature lines, and the lines orthogonal to
them are the main lines of curvature of the second family. For example,
in the described model approach, the growth transformation of the
tendril of the plant (Fig. 1) is interpreted as defined by a corresponding
change in at least one of the two resonant frequencies that control the
corresponding curvature k1 or k2 at the points of the surface. Of course,
under changes of this regulating resonance frequency, not only the
curvature but also the metric tensor of the channel surface is changed,
which agrees with the phenomenology of the growth transformations
under consideration. Thus, from the point of view of the morphor-
esonance theory, the transformation of some channel surfaces into
others is primarily a smooth rearrangement of the network of principal
curvature lines through the encoding assignment of one or two re-
sonance frequencies of some regulating vibration system with two de-
grees of freedom.

One should add that networks of curvature lines of surfaces is
conjugate to Möbius transformations known in geometry and physics.
The latter transform the surfaces in such a way that the lines of cur-
vature of the original surfaces go over into the lines of curvature of new
surfaces (for comparison, projective-geometric transformations of sur-
faces transform the lines of curvature of initial surfaces into lines of a
different kind). Mobius transformations (also called in the literature as
conformal-geometric or circular transformations) preserve the angles,
transfer spheres into spheres, and they are local-similar. Many phe-
nomena of biological symmetries are built on these Mobius transfor-
mations and their cyclic groups in multiblock bodies (Petoukhov,

Fig. 1. Examples of channel surfaces in geometry (A) and in morphology of the
growth transformation of a tendril of a plant (B).
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1989). Additional possible reasons for this biological realization of
Mobius symmetries are their local-similar nature: the transformations
of a small neighborhood of any point of the surface are scale, that is,
preserving curvature lines with a simple scaling of the curvatures k1
and k2 at each point (the shape of the surface as a whole can vary
significantly due to different scaling in its various points); from the
point of view of the morphoresonance theory, this local similarity of
transformations simplifies the resonance regulation of growth.

Another reason can be related to the important role of the network
of main lines of curvature in the theory of thin shells of structural
mechanics, where their use as local coordinate systems greatly sim-
plifies the equations of mechanics connecting the shape of shells with
stresses and deformations under loads (Pogorelov, 2007, p. 162). In the
case of thin (momentless) hulls for a broad range of surfaces (axial
symmetrical surfaces with an axial symmetrical load) the surface cur-
vature lines coincidence with the lines of their main tensions: in other
words, curvature lines are identified by the extreme mechanical prop-
erties. In biology the latter fact justifies the positioning along these lines
of the centers of chemical interaction between the organic surface and
the environment, because the extreme mechanical tensions probably
have an extreme impact on the opening of micropores; on deformations
of structural elemenents of chemical groupings on the surface; on re-
naturation and denaturation of collagen molecules, morphogenetically
important; on biological rhythms in morphogenetic processes etc. The
importance of mechanical stresses for morphogenetic processes was
repeatedly emphasized in the writings of Beloussov and his associates
(Beloussov, 2012, 2015; Cherdantsev, 2003; Cherdantsev, Grigorieva,
2012).

Concerning the theme of conformal (or Mobius) symmetries in
biomorphology, we also recall that Maxwell's equations of electro-
dynamics are invariant under the group of Mobius transformations; the
comprehension of this fact is one of the problems of physics, for the
solution of which different authors proposed various versions of the
conformal theory of relativity. The mathematical apparatus of quantum
mechanics is also closely related to Mobius symmetries and there are
several variants of conformal quantum field theory (for details, see
(Petoukhov, 1981, Chapter 2)). Examples of modeling ontogenetic
transformations of biological bodies based on Mobius transformations
are shown in Fig. 2, which was reproduced by Beloussov in his book
(Beloussov, 2015, p. 14) from the book (Petoukhov, 1988). These non-
linear morphogenetic transformations resemble the ideas of D'Arcy
Thompson about the curvature of the space of biological bodies: he
used curvilinear coordinates to demonstrate that the regular mathe-
matical transformations of curvature of the body shape of an organism
of one species reveals the relationship of its form to the body shape of
an organism of a different kind (Thompson, 1942).

The tensor product of two metric tensors generates a new metric
tensor related to the Riemannian space, respectively, of increased di-
mension. The same applies to the curvature tensors. By defining algo-
rithms or rules for changing metric tensors and curvature tensors, one
can build models of morphogenesis based on formalisms of Riemannian
geometry and think about the following: the morphological similarity
of generations are provided by the genetic transfer of the system of

these tensors from generation to generation. In our model approach we
believe that in bioinformatics and the biological evolution of organisms,
the following hierarchial principle using the tensor product is realized
to a certain extent: "systems of resonance frequencies encode more
general systems of resonant frequencies", which includes the principle
"metric tensors encode metric tensors of higher orders".

Physics and mathematics have gained valuable experience in the use
of metric tensors, in particular, in connection with the notion of a
tensor field. "We say that we are given a tensor field if at each point M of
space we are given a tensor of constant valence, but otherwise, generally
speaking, it varying from point to point. This tensor will be called the field
tensor" (Rashevsky, 1964, p. 46). In physics, precedents are known
when physical fields are identified with certain tensor fields. For ex-
ample, Einstein and Grossman identified the gravitational field with the
field of metric tensors of Riemann geometry. Since the Riemannian
geometry is determined by the assignment of a doubly covariant sym-
metric tensor, any physical problem reducing to the study of such a
tensor field can be formulated as a problem of Riemannian geometry. In
particular, tensor fields of this type include various physical quantities
characterizing the elastic, optical, thermodynamic, dielectric, piezo-
magnetic, and other properties of anisotropic bodies. In connection
with the concept of resonant genetics, some of these physical applica-
tions of Riemannian geometry can be used to study the phenomena of
biological morphogenesis and the development of the theory of the
morphogenetic field.

In biology, for the explanation of the phenomena of morphogenesis
long ago - from the very beginning of the 20th century - there are ideas
of a certain morphogenetic field within the organism (Beloussov, 1997).
Its versions are also known under other names: the embryonic field, the
biological field, the cellular fields, etc.

The concept of resonant bioinformatics, taking into account the
initial results obtained and the mathematical formalisms used
(Petoukhov, 2015a, b, 2016; Petoukhov and Petukhova, 2017), leads to
the emergence of a new version of the morphogenetic field, understood
as the tensor field of frequency-resonant peculiarities and interactions
in living matter of vibrational processes of different nature. The point is
that in the living organism there are many types of interrelated vibra-
tional and wave processes inscribed in the general picture of the genetic
inheritance of its features: electromagnetic, electromechanical (because
many biotissues are piezoelectrics), biochemical (accompanied by
sometimes cyclic conformational changes in biological molecules),
mechanical and etc. This set, increasing in the course of ontogeny of the
organism, is also endowed with a growing system of resonant-frequency
objects and their relationships, which largely determine the energy of
various parts of the body and transfer of energy between them. When
new portions of energy enter the body, for example, due to food from
the outside world, this resonant system participates in their redis-
tribution between organs and tissues, including ensuring morphoge-
netic processes. The proposed version of the morphogenetic field can be
called a "morphoresonant field" (Petoukhov, 2015a,b, 2016).

The following primary definition is possible (Petoukhov, 2015a,b): a
morphoresonant field is the tensor field of oscillatory or wave processes
that exists within the body and develops in time with coordinated

Fig. 2. Conformal symmetry transformations, preserving rectangular shapes of small parts under substantial deformations under growth of a mushroom fruit body
(from Petoukhov, 1988; Beloussov, 2015).
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resonant frequencies of the set of vibration systems with many degrees
of freedom. In this version of the morphogenetic field, the existence of
unknown types of physical fields is not assumed. Note that this version
differs from the versions of other authors in that it - for the first time -
connects the morphogenetic field with the mathematical formalisms of
the known theory of resonances of oscillatory systems and also with the
features of the molecular genetic system described in (Petoukhov,
2016). The versions of other authors - in their modeling approaches -
did not connect morphogenetic phenomena with structures of mole-
cular-genetic systems and with the mathematics of the theory of re-
sonances. The theory of the morphoresonant field is aimed at the de-
velopment of mathematical models of ontogenesis and phylogenesis of
curvilinear biological forms on the basis of the provision on resonance
mechanisms in living matter. From the standpoint of this model ap-
proach, morphogenesis is defined as the restructuring and development
of the system of tensors of the morphoresonant field, or as the re-
structuring and development of a system of coordinated resonant fre-
quencies of oscillatory processes in the body. The non-linear deforma-
tion of the biological body is connected with the action of the so-called
vibrational and wave forces described in vibrational and wave me-
chanics, where many amazing phenomena exist: phenomena of vibra-
tional separation and structuring of multiphase media, vibro-transpor-
tation of substances, vibro-transfer of energy and so forth (Blekhman,
2000; Ganiev et al., 2015). Practically invisible vibrations can provide,
for example, the following phenomena: the upper position of the in-
verted pendulum becomes stable; heavy metal ball “floats” in a layer of
sand; a rope takes a form of a vertical stem if a corresponding vibration
acts on its base. Inside fluids, vibrating bodies can attract or repel each
other (vibrating forces of Bjerknes) and pulsating gas bubbles may
coalesce or divide. Some applications of these phenomena to model
processes in biological objects are discussed in (Petoukhov, 2016).

In embryology, it is known that serious embryonic abnormalities
(for example, microsurgical removal of its parts) in many cases does not
prevent it from growing into a completely normal organism (Beloussov,
1998, 2015). What is the criterion for the correctness of the finite
configuration of the organism growing out of the embryo? Such a cri-
terion can be based on the coordination of the system of resonant
characteristics of an adult organism with the resonant patterns of its
molecular genetic system. The ability of resonance processes to influ-
ence structural formation is known in physics by the example of the
figures of Chladni and cymatics (Jenny, 2007). In them, for demon-
stration of the resonance shaping, external vibration is applied to a
resonant plate coated with powdery particles. These examples don't
exhaust at all the form-forming potentials of resonance systems, espe-
cially in cases where vibration is not imposed from the outside, but each
particle of the ensemble itself vibrates actively with its own oscillation
parameters and is in resonance interactions with other particles.

Mutual synchronization of morphogenetic processes is important for
a living body. Vibrational mechanics gives the known example of re-
sonant self-synchronization of plurality of oscillating pendulums
mounted on a common movable platform (Harvard demonstration –
http://www.youtube.com/watch?v=Aaxw4zbULMs). Inside a living
organism, its structural water apparently plays the role of such common
mobile platform, which is required for synchronization. Illustrative
example of morphogenetic and general physiological role of structural
water is given by jellyfish, which consists of 99% water, but despite of
this its morphology implements heritable phyllotaxis phenomena: ten-
tacles, canals and zooids of some jellyfish exactly correspond to phyl-
lotaxis laws (Jean, 1994, Chapter 12.3.3). This structural water is also a
candidate for the role of a unifying vibro-platform for vibro-transfer of
energy among different parts of a living body. The physical features of
structural water, associated with resonance interactions in it, are cur-
rently being studied in laboratories around the world. An important
role in vibro-connections among parts of an organism belongs also to
cytoskeleton that works in coordination with boundary water and
membranes (Igamberdiev, 2012).

4. Phyllotaxis and the mathematical theory of resonances

Let us give an example how matrix mathematics of the theory of
resonances can be connected with model approaches to morphogenetic
phenomena of phyllotaxis. Usually, the laws of phyllotaxis are de-
scribed as such inherited spiral arrangements of leafs in plants that are
characterized by the numbers of the Fibonacci series (Fn+2=Fn+Fn+1,
F0= 0, F1= 1). But similar laws dictate also inherited configurations
not only of plant organisms, but also alpha-helices of polypeptide
chains, parts of the body of animals, including shells of mollusks, etc.
(see reviews in the books (Jenny, 2007; Petoukhov, 1981)). In other
words, the laws of phyllotaxis appear in inherited morphological
structures at very different levels and branches of biological evolution.

One of known model approaches, which was not connected with
theory of resonances till now, uses so called Fibonacci matrix Q that
bear the characteristic name - "the matrix of growth" - in theories of
phyllotaxis (Jenny, 2007). The exponentiation of this matrix in integer
powers yields matrices, all entries of which are Fibonacci numbers:

= =
−

+

Q 0 1
1 1 ; Q

F F
F F

n n 1 n

n n 1 (5)

In connection with the mentioned concept of resonance genetics, let
us pay attention to the eigenvalues of this symmetric "matrix of growth"
(5), which have not been considered in mathematical and theoretical
biology before. Table 1 shows that the eigenvalues of the Fibonacci
matrix Q are equal to the famous golden section
φ=0,5*(1+50,5)= 1618… and its reciprocal value φ−1 with a minus
sign. This connection of the golden section with the eigenvalues of the
matrix Q can be used for the new definition of the golden section via
this matrix of growth. The golden section is a mathematical symbol of a
self-reproduction for many centuries (Leonardo da Vinci, J.Kepler, etc).
It is known that many authors note the golden section in different
physiological systems: cardio-vascular system, respiratory system,
electric activities of brain, etc. For the theory of resonances of vibration
systems, in which matrices should have positive eigenvalues (since they
are equal to the square of the resonant frequency), the square of the
Fibonacci matrix Q2 is appropriate and interesting, because in the
matrix Q2 both eigenvalues φ-2 and φ2 are positive (Table 1).

Both eigenvalues φ−2n and φ2n of any of matrices Q2n (Table 1) are
mutually inverse and determine the point with the Cartesian co-
ordinates (φ2, φ-2) on the hyperbola y=1/x (one can note that this
hyperbola plays the key role in the concept of resonance genetics for
modeling the principal psychophysiological law of Weber-Fechner
(Petoukhov, 2016)). From the point of view of the concept of re-
sonances, these data on the eigenvalues of even degrees of the Fibo-
nacci matrix Q2n indicate the possibility of modeling the morphogenetic
laws of phyllotaxis in the language of resonances of vibration systems
with two degrees of freedom in the close analogy with the mentioned
resonance model of the Weber-Fechner psychophysical law. One can
think that living matter skillfully uses hyperbolic structures in different
situations, giving them some universal character (recall that hyperbolic
rotations and hyperbolic numbers are expressed by symmetric matrices
that can be treated as matrix representations of the corresponding

Table 1
The eigenvalues and eigenvectors of the Fibonacci matrix Q and of its even
powers Q2n (n= 1, 2, 3, …).

Matrix Their eigenvalues Eigenvectors

Q = [0 1; 1 1] -φ−1, φ [-φ, φ°] and [φ°, φ] a

Q2 = [1 1; 1 2] φ−2, φ2 [-φ, φ°] and [φ°, φ] a

(Q2)n = [F2n-1 F2n; F2n F2n+1] φ−2n, φ2n [-φ, φ°] and [φ°, φ] a

a Note: the eigenvectors in this table are given without their normalization
per unit length. When normalized to a unit length, each of them has a nor-
malizing coefficient k = (φ2 + 1)−0.5= 0.5257….
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vibration systems).
In vibration systems, the eigenvalue φ2 corresponds to the re-

sonance frequency φ. But is anything known about the existence in
nature of vibration systems, whose resonant frequencies are associated
with the golden section φ? Yes, it is. The journal "Science Daily" has
published an article with the characteristic title "The Golden Section is
Open in the Quantum World" (Coldea et al., 2010) about the following.
Researches of cobalt niobate, which has magnetic properties, have re-
vealed: "the chain of atoms acts like a nanoscale guitar string. … The
tension comes from the interaction between spins causing them to magneti-
cally resonate. For these interactions we found a series of resonant notes: the
first two notes show a perfect relationship with each other. Their frequencies
(pitch) are in the ratio of 1.618…, which is the golden ratio famous from art
and architecture".

Modeling of phyllotaxis laws in the language of resonant fre-
quencies can be continued further (Petoukhov, 2015a). For example
normalized eigenvectors of the Fibonacci matrix Q can be considered as
columns of the matrix M=[-φ*k, k; k, φ*k], which is the unitary matrix
and which is also the reflection matrix since M2 = E (here k = (φ2 +
1)−0.5= 0.5257… ; E is the identity matrix). This fact is interesing
because matrices of such types play an important role in quatum me-
chanics and quantum computung. But let us turn now to the question,
which was especially interesting for Beloussov, about the role of pho-
tons in inherited morphogenetic phenomena (Beloussov et al., 2007;
Voeikov and Beloussov, 2007).

5. Photons, photonic crystals and genetic information for
morphogenesis

From the point of view of quantum mechanics, the interaction of
molecules is based on the emission and absorption of photons with the
participation of resonance correspondences. Therefore, special atten-
tion should be paid to the important role of photons and photonic
crystals in genetic informatics.

As known, a photon is a type of elementary particle, the quantum of
electromagnetic field including electromagnetic radiation such as light,
and the force carrier for electromagnetic field (in particle physics, force
carriers or messenger particles or intermediate particles are particles
that give rise to forces between other particles (https://en.wikipedia.
org/wiki/Force_carrier). A photon has two possible polarization states.
Photon energy is the energy carried by a single photon. The amount of
energy is directly proportional to the photon's electromagnetic fre-
quency. Photon energy is solely a function of the photon's frequency.

Photons, which are radiated by different molecular elements, can
differ by their frequencies. In DNA and RNA, each of their nitrogenous
bases – adenine A, cytosine C, guanine G, thymine T and uracil U –
posesses individual traits from the following sets of binary-oppositional
traits or indicators: purine or pyrimidine, strong or weak hydrogen
bonds, amino or keto (see more details in (Petoukhov, 2008, 2016;
Petoukhov, He, 2010)). From the standpoint of quantum mechanics,
each of these molecular indicators can emite photons with its own in-
dividual frequencies for interactions with other molecules on the bases
of the emission and absorption of photons. Since these photons have
their individual frequencies, they can be named as color photons.
Correspondingly for modeling aims, one can consider the appropriate
set of color photons emitted by the mentioned molecular indicators. In
our model approach, these color photons provide actions of the mole-
cular indicators of the nitrogenous bases onto surrounding molecules to
transfer genetic information. From these point of view the existence of
DNA sequences is accompanied by a rich set of appropriate beams of
special color photons with different energy to provide a cooperative
information functioning of ensembles of genetic elements. Taking this
into account, a quantum-algorythmic model approach was proposed for
molecular genetics (Petoukhov, 2017; Petoukhov, Svirin, 2018).

From this point of view, nitrogenous bases A, C, G, T/U and their
combinations in DNA and RNA are resonance determinants of

frequencies of genetic photonic ensembles within living bodies (or
briefly, “geno-photon determinants”). The reading and transmission of
genetic information from DNA and RNA molecules occurs by means of a
set of resonance frequencies of their photons. DNA encodes quantum
states of its photon beams. The photons language is a serious candidacy
for the role of a basic language of molecular-genetic information.
Figuratively speaking, from this point of view, life in its information
aspects is woven from the light.

Photons are actively studied in modern science as elements of
quantum computers and devices of quantum cryptography. In models of
quantum computers, conventional light polarizers are used to create
pure and mixed states of n-qubit systems of light beams. The idea of
ensembles of «multicolor» photons for a creation of n-qubit states,
which was noted by us above in the connection with DNA-texts, was
independently used in the recent engineering work of Canadian scien-
tists (Caspani et al., 2016). This work has revealed a new perspective
way to create quantum computers. For increasing dimensionality of the
photon quantum state, its authors used the ability to generate multiple
photon pairs on a frequency comb, correpsponding to resonances in
specifically designed microcavities. Such technological achievemnets
can be useful for deeper understanding the role of beams of multicolor
photons in genetic informatics and in inherited morphogenetic phe-
nomena.

Modern engineering technologies actively use so-called photonic
crystals to control the spatial distribution of photon beams
(Joannopoulos et al., 2008; https://en.wikipedia.org/wiki/Photonic_
crystal). A photonic crystal is a periodic optical nanostructure that af-
fects the motion of photons. Photonic crystals contain regularly re-
peating regions of high and low dielectric constant. Photons (behaving
as waves) either propagate through this structure or not, depending on
their wavelength. This gives rise to distinct optical phenomena, such as
inhibition of spontaneous emission, high-reflecting omni-directional
mirrors, and low-loss-waveguiding. The periodicity of the photonic
crystal structure must be around half the wavelength of the electro-
magnetic waves to be diffracted. One should note that, as known, living
bodies posses inherited opportunities to manage photonic beams using
physical principles of photonic crystals with their properties of photon
gratings, etc. Many inherited biological phenomena of structural col-
oration and of animal reflectors are built on this, including a beautiful
coloring of butterfly wings, peacock feathers, etc. (see details and lists
of references in https://en.wikipedia.org/wiki/Photonic_crystal,
https://en.wikipedia.org/wiki/Animal_reflectors, https://en.wikipedia.
org/wiki/Structural_coloration). It is natural to assume that the genetic
transfer of inherited properties of photonic crystals in biological bodies
is built on that the molecular genetic structures themselves possess the
properties of photonic crystals. One can remind here the Schrödinger's
definition of chromosomes as aperiodic crystals (Schrödinger, 1944).

We believe that spatial characteristics of ensembles of genetic and
other biological molecules, that form complex diffraction structures,
play the managing role of photonic crystals in the problem of control-
ling photon beams that are generated and absorbed by these molecules
(the range of photon frequencies in living bodies can be very wide, far
beyond the optical range). In particular, the spatial configuration of
genetic molecules as photonic crystals is an important factor in con-
trolling the processes of transmission of genetic information from DNA
and RNA molecules with using photon beams generated by them.

In our opinion, the inherited morphogenetic processes in living
bodies are also determined to a large extent by biological photon
beams, the course of which is not accidental, but is strictly organized by
a system of spatial characteristics of ensembles of genetic and other
biological molecules as photonic crystals. In the course of ontogeny, on
the basis of electromagnetic (photonic) interactions, new molecular
materials are involved into a naturally growing biological body, which
leads to the appropriate growth of the managing system of biophotonic
crystals and to the growth of numbers of photon beams. Of course,
quantum-mechanic laws of resonances in molecular photonic
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interactions play the key role. On this basis, we develop our concept of
the "morpho-resonance field" to model morphogenetic phenomena
(Petoukhov, 2015a, b, 2016).

The phenomenon of vibro-transfer of energy among parts of an os-
cillatory system is known: a rotary electromotor operates stably, when
it is disconnected from the power electrosupply, if it is standing on a
mutual vibro-platform with another rotary electromotor of similar re-
sonant characteristics, which is connected to a power supply (self-
synchronization by resonant interactions). Taking into account possi-
bilities of such energy transferring, living organisms can be seen as
resonance consumers of energy of surrounding electromagnetic waves
coming from space and the depths of the earth. Photosynthesis, which
playes a huge role in providing the biological life and which is based on
absorbing solar energy of light waves, is probably only one of examples
of the biological consumption of energy from external wave sources on
the basis of resonant mechanisms (a resonant "vampirism" of energy
and information in organisms).

Classical electrodynamics describes a photon as an electromagnetic
wave with its circular right or left polarization. To the theme “life and
photons”, one can add many interesting connections of these polar-
ization properties of photons with inherited properties of living bodies,
for example, the following:

• One of the biggest mysteries of nature is the asymmetry of biological
molecules, accompanied by a preferred direction of the rotation - to
the left or to the right - of the polarization plane of light by these
molecules (this was discovered by Louis Pasteur). For example, all
biological amino acids (except the simplest glycine, which is sym-
metric), from which the proteins of all living organisms are com-
posed, exist only in one of two possible asymmetric forms - in the
left form. Amino acids in this form rotate the plane of polarization of
light to the left. Our body doesn't use amino acids with the opposite
right form, rotating the plane of polarization of light to the right.
Biological catalysts - enzymes -, being built asymmetrically, act only
on one optical antipode, without touching the another. The same
asymmetry with respect to the right and left is inherent not only in
amino acids, but also in the nucleotides that form DNA and RNA.
The reason for this is the asymmetry of the components of the sugar,
which is part of the nucleotides and which provides the optical ac-
tivity of DNA and RNA molecules: they rotate the plane of polar-
ization of light to the right.

• Millions of species of living organisms (insects, mollusks, ar-
thropods, etc.) are endowed with inherited ability to see in polarized
light (a human organism does not possess this ability).

Deep investigations of the role of photons and photonic crystals in
genetic informatics and morphogenesis can lead to many new dis-
coveries and useful applications.

6. Some concluding remarks

Deep works by L. Beloussov in the field of fundamental problems of
morphogenesis gave rise to a wide range of works by other authors. Our
own works can be considered as one of their continuations. This review
article shows our data about the important role of resonances and
photonic crystals in genetic informatics. Mathematical formalisms of
differential Riemannian geometry and tensor analysis are used for
modeling inherited curved surfaces in biomorphology. Notions of a
morpho-resonance field are discussed. The connection of the golden
section with the Fibonacci matrix of growth used in morphogenetic
models of phyllotaxis is shown.

A living organism is a single whole. A creation of integral ap-
proaches to biological phenomena is one of main task of modern
mathematical and theoretical biology (see, for example, (Integral bio-
mathics, 2012; Simeonov, 2013; Simeonov et al., 2017). The concept of
resonant genetics (or resonant bioinformatics) allows modeling - in a

single academic language of matrix mathematics - biological phe-
nomena of different levels and different areas of physiology: from
molecular genetics to the morphogenetic phenomena and inherited
psychophysical laws. From this standpoint, the body can be considered
as a complex oscillating part of the universe, associated with the vi-
brational processes of the outside world by resonant relationships. The
account of these resonant relationships is also useful in the problems of
weak and superweak influences in biology and medicine.

One can mention that – in line with thoughts of some authors –
morphogenesis defines geometric structures not only of our body but
also of our mind. Here the following thoughts can be quotated from
(Nalimov, 2015, p. 115): “artificial intelligence could be brought closer to
mathematical thinking if it were possible to realize the metrical properties of
the human mind. … the consciousness itself is structured geometrically: any
person in his existential aspects is geometric. … in our minds, when con-
structing texts through which we perceive the World, something very similar
to what happens in morphogenesis occurs. We are ready to see in the depths
of consciousness the same geometric images that are revealed in morpho-
genesis”.

Genetic molecules belong to the microworld and therefore are
subordinated to the principles of quantum mechanics. Quantum me-
chanics operates with frequency and resonance characteristics of
quantum-mechanical objects; its mathematics uses eigenvalues of ma-
trices. In general, quantum mechanics was emerged and developed
largely as a science about resonances in microworld. Thus, the concept
of system-resonance genetics creates models of genetic phenomena on
the same language of frequencies and resonances, on which models in
quantum mechanics are based. In addition to this, it uses the same
matrix language, on which "matrix mechanics" of Werner Heisenberg
has been created; it is historically the first form of quantum mechanics,
which retains its value to this day.

Many authors supposed that living organisms use principles of
quantum computers. For example, in his thoughts about quantum
computers in living organisms, R. Penrose appeals to the known fact
that tubulin proteins exist in two different configurations, and they can
switch between these configurations like triggers to provide bio-com-
puter functions (Penrose, 1996). By contrast to this “protein stand-
point”, results of the model approach of the resonance genetics testify
that already the molecular-genetic level, which is the deepest level of
living organisms, is connected with the principles of quantum compu-
ters (Petoukhov, 2017, 2018; Petoukhov and Svirin, 2018).

The concept of resonance genetics can facilitate a convergence of
biology and quantum mechanics, possibility of which is studied by
many authors (see for example (Igamberdiev, 2014; Matsuno, 1999,
2003; Matsuno, Paton, 2000; Patel, 2001a, b)). It proposes a new class
of mathematical models for biological symmetries in genetics and in-
herited morphogenetic structures. The creator of the theory of re-
sonances in structural chemistry L. Pauling was right when he supposed
an important meaning of resonances in organization of living matter
(Pauling, 1940).
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