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Abstract: The article describes results of study of some symmetries of the genetic coding 
system by means of matrix representations of its molecular ensembles. This matrix 
approach is borrowed by the author from the known theory of noise-immunity coding, 
which is used for a long time in discrete signals processing for communication and 
computer technology. In the process, important connections between the hierarchy of 
genetic alphabets and complex numbers, quaternions by Hamilton and some other 
multi-dimensional numbers are discovered by means of analysis of reasoned numeric 
representations of genetic (2n*2n)-matrices. It has been shown that these numeric 
matrices belong to a class of “matrices with internal complementarities” and they 
allow creation of new mathematical tools to study the molecular-genetic system, 
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including hidden regularities of long nucleotide sequences. The described results give 
some evidences about the algebraic nature of the molecular-genetic system. 

Keywords: symmetry, genetic code, matrix, hypercomplex numbers, complementarity, 
Kronecker multiplication, long nucleotide sequences. 

1. ABOUT THE PARTNERSHIP OF THE GENETIC CODE AND 
MATHEMATICS 

Science has led to a new understanding of life itself: “Life is a partnership between 
genes and mathematics” (Stewart, 1999). This article describes a system of 
multidimensional numeric structures together with some evidences that this 
mathematical system is the partner of molecular ensembles of the genetic code. The 
described results are based on symmetric properties of the genetic code system and on a 
matrix approach which was borrowed by the author from mathematics of noise-
immunity coding to study genetic phenomenology (Petoukhov, 2008a-c, 2011, 2012; 
Petoukhov, He, 2010). 

       1 -1 1 -1 -1 1 1 -1 
       1 1 1 1 -1 -1 1 1 
 1 1 -1 1   -1 1 1 -1 1 -1 1 -1 
 -1 1 1 1   -1 -1 1 1 1 1 1 1 

H4 = 1 -1 1 1 ;         H8 =  1 -1 -1 1 1 -1 1 -1 
 -1 -1 -1 1   1 1 -1 -1 1 1 1 1 
       -1 1 -1 1 -1 1 1 -1 
       -1 -1 -1 -1 -1 -1 1 1 

 
      1 1 1 1 1 1 -1 -1 
      1 1 1 1 1 1 -1 -1 
 1 1 1 -1  -1 -1 1 1 -1 -1 -1 -1 
R4 = -1 1 -1 -1 ;       R8 = -1 -1 1 1 -1 -1 -1 -1 
 1 -1 1 1  1 1 -1 -1 1 1 1 1 
 -1 -1 -1 1  1 1 -1 -1 1 1 1 1 
      -1 -1 -1 -1 -1 -1 1 1 
      -1 -1 -1 -1 -1 -1 1 1 
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Figure 1: numeric matrices H4, H8, R4 and R8 which are connected with phenomenology of the genetic coding 
system (Petoukhov, 2011, 2012) 

The main mathematical objects of the article are four matrices R4, R8, H4 and H8 shown 
on Figure 1. Why these numeric matrices are chosen from infinite set of matrices? The 
reason is that they are connected with phenomenology of the genetic code system in 
matrix forms of its representation as it was shown in works (Petoukhov, 2011, 2012), 
and as it will be additionally demonstrated in the end of this article, where a conclusion 
about algebraic essence of the nature of genetic informatics will be made. The matrices 
H4 and H8 belong to a huge set of famous Hadamard matrices, which are widely used 
for noise-immunity coding in technologies of signals processing. The matrices R4 and 
R8 are conditionally termed “Rademacher matrices” because each of their columns 
represents one of known Rademacher functions. 

2. THE HADAMARD MATRICES H4 AND H8 

Let us begin with analysis of the (4*4)-matrix H4 (Figure 1). One of variants of 
decomposition of the matrix H4 gives a set of 4 sparse matrices H40, H41, H42 and H43 
(Figure 2). This set is closed in relation to multiplication and it defines their 
multiplication table (Figure 2, bottom row) that is identical to the famous multiplication 
table of quaternions by Hamilton. From this point of view, the matrix H4 is the 
quaternion by Hamilton with unit coordinates. (Such type of decompositions is termed a 
dyadic-shift decomposition because it corresponds to structures of matrices of dyadic 
shifts, well known in technology of signals processing (Ahmed, Rao, 1975)).  

H4 = H40 + H41 + H42 + H43 = 
1 0 0 0  0 1 0 0  0 0 -1 0  0 0 0 1 
0 1 0 0 + -1 0 0 0 + 0 0 0 1 + 0 0 1 0 
0 0 1 0  0 0 0 1  1 0 0 0  0 -1 0 0 
0 0 0 1  0 0 -1 0  0 -1 0 0  -1 0 0 0 
 

 1 H41 H42 H43 
1 1 H41 H42 H43 
H41 H41 - 1 H43 - H42 
H42 H42 - H43 - 1 H41 
H43 H43 H42 - H41 - 1 
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Figure 2: the dyadic-shift decomposition of the (4*4)-matrix H4 (from Figure 1) gives the set of 4 sparse 
matrices H40, H41, H42 and H43, which corresponds to the multiplication table of quatrnions by Hamilton 

(bottom row). The matrix H40 is identity matrix 

But the matrix H4 is also the sum of two sparse matrices HL4 and HR4 (Figure 3). One 
can numerate 4 columns of the matrix H4 from left to right by numbers 0, 1, 2 and 3. In 
this case two columns with non-zero entries in the matrix HL4 have numerations with 
even numbers 0 and 2; two columns with non-zero entries in the matrix HR4 have 
numerations with odd numbers 1 and 3. In view of this, such decomposition         
H4=HL4 +HR4 can be conditionally termed as “the even-odd decomposition” (such type 
of decompositions will be used a few times in this article).  
 
 
H4 = HL4 + HR4 = 

 1 0 -1 0  
+ 

0  1 0 1 
, -1 0  1 0 0  1 0 1 

 1 0  1 0 0 -1 0 1 
-1 0 -1 0 0 -1 0 1 

 
 
      HL4 = HL40 + HL41 = 

 1 0  0 0  
+ 

 0 0 -1 0  
, -1 0  0 0  0 0  1 0 

 0 0  1 0  1 0  0 0 
 0 0 -1 0 -1 0  0 0 

 
 
     HR4 = HR40 + HR41 =        

0 1 0 0  
+ 

0 0 0 1 
0 1 0 0 0 0 0 1 
0 0 0 1 0 -1 0 0 
0 0 0 1 0 -1 0 0 

 

Figure 3: upper row: the representation of the matrix H4 as sum of matrices HL4 and HR4. Other rows: 
representations of each of matrices HL4 and HR4 as sums of two matrices: HL4=HL40+HL41, HR4 =HR40+HR41 

It is unexpected but the set of two (4*4)-matrices HL40 and HL41 is also closed in 
relation to multiplication and it defines their multiplication table (Figure 43), identical 
to the multiplication table of complex numbers 
(http://en.wikipedia.org/wiki/Complex_number). One can note that in the field of matrix 
analysis, complex numbers are usually represented by means of (2*2)-matrices [a, -b; b, 
a]. Let us consider now the set of (4*4)-matrices CL = a0*HL40+a2*HL41 which is the 
unusual representation of complex numbers (here a0, a2 are real numbers) (Figure 4). 
The classical identity matrix E=[1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1] is absent in the set of 
matrices CL, each of which has zero determinant. Consequently the usual notion of the 
inverse matrix CL

-1 (as CL*CL
-1=E) can’t be defined in relation to the classical identity 
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matrix E in accordance with the famous theorem about inverse matrices for matrices 
with zero determinant (Bellman, 1960, Chapter 6, § 4). On the other hand, the set of 
matrices CL has the matrix HL40, which possesses all properties of identity matrix (or 
the real unit) for any member of this set (one can check that the matrix HL40 represents 
the real unit in this set). In the frame of the set of matrices CL, where the matrix HL40 
represents the real unity, one can define the special notion of inverse matrix CL

-1 for any 
non-zero matrix CL in relation to the matrix HL40 on the base of equations: CL*CL

-1 = 
CL

-1*CL
 = HL40. From this point of view, the genetic (4*4)-matrix HL4 is the complex 

number with unit coordinates (a0=a2=1). In the case of genetic matrices, we reveal that 
4-dimensional spaces can contain 2-parametric subspaces, in which complex numbers 
exist in the form of (4*4)-matrices CL. 
 
 HL40 HL41   

CL = a0*HL40+a2*HL41 = 
a0 0 -a2 0 

HL40 HL40 HL41 ; -a0 0 a2 0 
HL41 HL41 -HL40  a2 0 a0 0 
   -a2 0 -a0 0 
 
      a0 0  a2 0 
                                         CL

-1 = (a0
2+a2

2)-1 * -a0 0 -a2 0 
     -a2 0  a0 0 
      a2 0 -a0 0 

Figure 4: the multiplication table of two (4*4)-matrices HL40 and HL41 (from Figure 3), which represent a set 
of two basic elements of complex numbers CL = a0*HL40+a2*HL41, where a0, a2 are real numbers. In the frame 

of the set of 2-parametric matrices CL, where the matrix HL40 represents the real unit, the matrix CL
-1 is the 

inverse matrix for CL by definition on the base of the equation: CL*CL
-1 = HL40 

 

A similar situation holds true for (4*4)-matrices HR4 = HR40 + HR41 (from Figure 3). 
The set of two matrices HR40 and HR41 is also closed in relation to multiplication; it 
gives the multiplication table (Figure 5) which is also identical to the multiplication 
table of complex numbers. The set of (4*4)-matrices CR = a1*HR40+a3*HR41, where a1, 
a3 are real numbers, represents complex numbers in the (4*4)-matrix form (Figure 5). 
The matrix HR40 plays a role of the real unit in this set of matrices CR. In the frame of 
matrices CR, where HR40 represents the real unit, the matrix CR

-1 (Figure 5) is the 
inverse matrix for any non-zero matrix CR by definition on the base of equations    
CR*CR

-1 = CR
-1*CR = HR40. The genetic matrix HR4 is complex number with unit 

coordinates (a1=a3=1). Two sets of (4*4)-matrices CL and CR are quite different 
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representations of complex numbers; for example, a sum CL+CR of members of these 
sets is not complex number. 

 
 HR40 HR41   

CR = a1*HR40+a3*HR41 = 
 0 a1 0 a3 

HR40 HR40 HR41 ;  0 a1 0 a3 
HR41 HR41 -HR40  0 -a3 0 a1 
   0 -a3 0 a1 

 
     0 a1 0 -a3 
                                        CR

-1 = (a1
2+a3

2)-1 * 0 a1 0 -a3 
     0 a3 0  a1 
     0 a3 0  a1 

Figure 5: the multiplication table of two (4*4)-matrices HR40 and HR41 (from Figure 3), which represent a set 
of two basic elements of complex numbers CR = a1*HR40+a3*HR41, where a1, a3 are real numbers. In the frame 

of the set of 2-parametric matrices CR, where the matrix HR40 represents the real unit, the matrix CR
-1 is the 

inverse matrix for any non-zero matrix CR by definition on the base of the equation: CR*CR
-1 = HR40 

One should note that actions of the (4*4)-matrices HL4 and HR4 on 4-dimensional 
vectors in their planes R0(x0, 0, x2, 0) and R1(0, x1, 0, x3) rotate the vectors in different 
directions: clockwise and counterclockwise (Figure 6). The properties of these genetic 
matrices can be used in studying the famous problem of dissymmetry in biological 
organisms. 

  

Figure 6: The action of the matrix HL4 on a 4-dimensional vector R0(x0, 0, x2, 0) leads to a vector  rotation 
clockwise (on the left). The action of the matrix HR4 on a 4-dimensional vector R1(0, x1, 0, x3) leads to a 

vector  rotation counterclockwise (on the right) 

As described above, we have received one more interesting result: the sum of two 2-
dimensional complex numbers HL4 and HR4 with unit coordinates (they belong to two 
different matrix types of complex numbers) generates the 4-dimensional quaternion by 
Hamilton with unit coordinates H4=HL4+HR4 (Figure 2). It resembles a situation when a 
union of Yin and Yang (or a union of female and male beginnings, or a fusion of male 
and female gametes) generates a new organism. Below we will meet with other similar 
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situations concerning (2n*2n)-matrices, which represent (2n)-dimensional numbers with 
unit coordinates and which consists of two “complementary” halves (like the matrix 
H4), each of which is 2n-1-dimensional number with unit coordinates. One can name 
such type of matrices as “matrices with internal complementarities”. They resemble in 
some extend the complementary structure of double helixes of DNA.  

Let us return now to the (8*8)-matrix H8 (Figure 1) and demonstrate that it is also the 
matrix with internal complementarities. Figure 6 shows the matrix H8 as sum of 
matrices HL8 and HR8. 

                                                  H8 = HL8+HR8 = 
1 0 1 0 -1 0 1 0  0 -1 0 -1 0 1 0 -1 
1 0 1 0 -1 0 1 0  0 1 0 1 0 -1 0 1 
-1 0 1 0 1 0 1 0  0 1 0 -1 0 -1 0 -1 
-1 0 1 0 1 0 1 0 + 0 -1 0 1 0 1 0 1 
1 0 -1 0 1 0 1 0  0 -1 0 1 0 -1 0 -1 
1 0 -1 0 1 0 1 0  0 1 0 -1 0 1 0 1 
-1 0 -1 0 -1 0 1 0  0 1 0 1 0 1 0 -1 
-1 0 -1 0 -1 0 1 0  0 -1 0 -1 0 -1 0 1 

Figure 7: The matrix H8 (from Figure 1) is one of matrices with internal complementarities, which are 
represented by its halves HL8 and HR8 (explanation in text) 

Figure 8 shows a decomposition of the matrix HL8 (from Figure 7) as a sum of 4 
matrices: HL8 = HL80 + HL81 + HL82 + HL83. The set of matrices HL80, HL81, HL82 and 
HL83 is closed in relation to multiplication and it defines the multiplication table which 
is identical to the multiplication table of quaternions by Hamilton. General expression 
for quaternions in this case can be written as QL = a0*HL80 + a1*HL81 + a2*HL82 + 
a3*HL83, where a0, a1, a2, a3 are real numbers. From this point of view, the (8*8)-
genomatrix HL8 is the 4-dimensional quaternion by Hamilton with unit coordinates. 

 
                              HL8 = HL80 + HL81 + HL82 + HL83 = 
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 HL80 HL81 HL82 HL83 
HL80 HL80 HL81 HL82 HL83 
HL81 HL81 - HL80 HL83 - HL82 
HL82 HL82 - HL83 - HL80 HL81 
HL83 HL83 HL82 - HL81 - HL80 

Figure 8: upper rows: the decomposition of the matrix HL8 (from Figure 7) as sum of 4 matrices: HL8 = HL80 

+ HL81 + HL82 + HL83. Bottom row: the multiplication table of these 4 matrices HL80, HL81, HL82 and HL83, 
which is identical to the multiplication table of quaternions by Hamilton. The matrix HL80 represents the real 

unit for this matrix set 

The similar situation holds true for the matrix HR8 (from Figure 7). Figure 9 shows a 
decomposition of the matrix HR8 as a sum of 4 matrices: HR8 =  HR80 + HR81 + HR82 + 
HR83. The set of matrices HR80, HR81, HR82 and HR83 is closed in relation to 
multiplication and it defines the multiplication table which is identical to the same 
multiplication table of quaternions by Hamilton. General expression for quaternions in 
this case can be written as QR = a0*HR80 + a1*HR81 + a2*HR82 + a3*HR83, where a0, a1, 
a2, a3 are real numbers. From this point of view, the (8*8)-genomatrix HR8 is the 
quaternion by Hamilton with unit coordinates. 

HR8 = HR80 + HR81 + HR82 + HR83 = 

 1 0  1 0  -1 0  1 0 
 1 0  1 0  -1 0  1 0 
-1 0  1 0  1  0  1 0 
-1 0  1 0  1  0  1 0 
 1 0 -1 0  1  0  1 0 
 1 0 -1 0  1  0  1 0 
-1 0 -1 0 -1 0  1 0 
-1 0 -1 0 -1 0  1 0 

 
 
 
= 

1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 

 
 
 
+ 

 0 0 1 0  0  0  0 0 
 0 0 1 0  0  0  0 0 
-1 0 0 0  0  0  0 0 
-1 0 0 0  0  0  0 0 
 0 0 0  0  0  0  1 0 
 0 0 0  0  0  0  1 0 
 0 0 0  0 -1  0  0 0 
 0 0 0  0 -1  0  0 0 

 

   
  

 
 
+ 

0 0  0 0 -1 0  0 0 
0 0  0 0 -1 0  0 0 
0 0  0 0  0 0  1 0 
0 0  0 0  0 0  1 0 
1 0  0 0  0 0  0 0 
1 0  0 0  0 0  0 0 
0 0 -1 0  0 0  0 0 
0 0 -1 0  0 0  0 0 

 
 
 
+ 

 0 0  0 0  0 0 1 0 
 0 0  0 0  0 0 1 0 
 0 0  0 0  1 0  0 0 
 0 0  0 0  1 0  0 0 
 0 0 -1 0  0 0  0 0 
 0 0 -1 0  0 0  0 0 
-1 0  0 0  0 0  0 0 
-1 0  0 0  0 0  0 0 
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0 -1  0 -1 0  1 0 -1 
0  1  0   1 0 -1 0  1 
0  1  0 -1 0 -1 0 -1 
0 -1 0   1 0  1  0  1 
0 -1 0   1 0 -1 0 -1 
0  1  0 -1 0  1  0  1 
0  1  0  1 0   1  0 -1 
0 -1 0 -1 0 -1  0  1 

 
 
 
 
= 
 
 
 
 
 
 
+ 

0 -1 0  0 0  0  0  0 
0  1 0   0 0  0  0  0 
0  0 0 -1 0  0  0  0 
0  0 0   1 0  0  0  0 
0  0 0   0 0 -1 0  0 
0  0 0   0 0  1  0  0 
0  0 0   0 0  0  0 -1 
0  0 0   0 0  0  0   1 

 
 
 
 
+ 

0  0 0 -1 0 0 0  0 
0  0 0   1 0 0 0  0 
0  1 0   0 0 0 0  0 
0 -1 0  0 0  0 0  0 
0  0  0  0 0  0 0 -1 
0  0  0  0 0  0 0  1 
0  0  0  0 0  1 0  0 
0  0  0  0 0 -1 0  0 

    
0  0  0  0 0  1  0  0 
0  0  0  0 0 -1 0  0 
0  0  0  0 0  0  0 -1 
0  0  0  0 0  0  0  1 
0 -1 0  0 0  0  0  0 
0  1  0  0 0  0  0  0 
0  0  0  1 0  0  0  0 
0  0  0 -1 0  0 0  0 

 
 
 
 
+ 

0  0 0  0 0 0  0 -1 
0  0 0  0 0  0 0   1 
0  0 0  0 0 -1 0  0 
0  0 0  0 0  1  0  0 
0  0 0  1 0  0  0  0 
0  0 0 -1 0  0  0  0 
0  1 0   0 0  0  0  0 
0 -1 0  0 0  0  0   0 

 
 HR80 HR81 HR82 HR83 
HR80 HR80 HR81 HR82 HR83 
HR81 HR81 - HR80 HR83 - HR82 
HR82 HR82 - HR83 - HR80 HR81 
HR83 HR83 HR82 - HR81 - HR80 

 

Figure 9: upper rows: the decomposition of the matrix HR8 (from Figure 7) as sum of 4 matrices: H8R = H08R 

+ H18R + H28R + H38R. Bottom row: the multiplication table of these 4 matrices HR80, HR81, HR82 and HR83, 
which is identical to the multiplication table of quaternions by Hamilton. HR80 represents the real unit for this 

matrix set 

The initial (8*8)-matrix H8 (Figure 1) can be also decomposed in another way on the 
base of dyadic-shift decomposition. Figure 10 shows such dyadic-shift decomposition 
H8 = H80+H81+H82+H83+H84+H85+H86+H87, when 8 sparse matrices H80, H81, H82, H83, 
H84, H85, H86, H87 arise (H80 is identity matrix). The set H80, H81, H82, H83, H84, H85, H86, 
H87 is closed in relation to multiplication and it defines the multiplication table on 
Figure 10. This multiplication table is identical to the multiplication table of                 
8-dimensional hypercomplex numbers that are termed as biquaternions by Hamilton (or 
Hamiltons’ quaternions over the field of complex numbers). General expression for 
biquaternions in this case can be written as Q8 = a0*H80+a1*H81+a2*H82+a3*H83+ a4*H84 

+a5*H85+a6*H86+a7*H87, where a0, a1, a2, a3, a4, a5, a6, a7 are real numbers. From this 
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point of view, the (8*8)-genomatrix H8 is Hamiltons’ biquaternion with unit 
coordinates.  

 
    H8 = H80+H81+H82+H83+H84+H85+H86+H87 = 
 
1   0   0   0   0   0   0   0 
0   1   0   0   0   0   0   0 
0   0   1   0   0   0   0   0 
0   0   0   1   0   0   0   0 
0   0   0   0   1   0   0   0 
0   0   0   0   0   1   0   0 
0   0   0   0   0   0   1   0 
0   0   0  0    0   0   0   1 

 
 
 
+ 

 0 -1  0  0  0  0  0  0  
1   0  0  0  0  0  0  0 
 0  0  0 -1  0  0  0  0 
 0  0  1  0  0  0  0  0 
 0  0  0  0  0 -1  0  0 
 0  0  0  0  1  0  0  0 
 0  0  0  0  0  0  0 -1 
 0 0  0  0   0  0  1  0 

 
 
 
+ 

0    0   1   0    0   0   0   0 
0    0    0   1   0   0   0   0 
-1   0   0  0   0   0   0   0 
0   -1   0  0    0   0   0   0 
0    0   0   0    0   0  1   0 
0    0   0   0    0   0   0  1 
0    0   0   0   -1  0   0  0 
0    0   0   0   0  -1   0  0 

 
 
 
+ 

 0   0   0   -1  0   0   0   0 
 0   0   1    0   0   0   0   0 
 0   1   0    0   0   0   0   0 
-1   0   0    0   0   0   0   0 
 0   0   0     0   0   0   0  -1 
 0   0   0     0   0   0   1   0 
0    0   0     0   0   1   0   0 
0   0    0    0   -1  0   0   0 

 
 
 
 
+ 

 
0   0   0   0  -1  0   0   0 
0   0   0   0   0  -1   0   0 
0   0   0   0   0   0   1   0 
0   0   0   0   0   0   0   1 
1   0   0   0   0   0   0   0 
0   1   0   0   0   0   0   0 
0   0  -1   0  0   0   0   0 
0   0  0  -1   0   0   0   0 

 
 
 
+ 

0   0   0   0   0   1   0   0 
0   0   0   0  -1   0   0   0 
0   0   0   0   0   0   0  -1 
0   0   0   0   0   0   1   0 
0 -1   0   0   0   0   0   0 
1   0   0   0   0   0   0   0 
0   0   0   1   0   0   0   0 
0   0  -1  0   0   0   0   0 

 
 
 
+ 

0   0   0   0   0   0   1   0 
0   0   0   0   0   0    0   1 
0   0   0   0   1   0   0    0 
0   0   0   0   0   1   0    0 
0   0  -1   0   0   0   0    0 
0   0   0   -1  0   0   0   0 
-1  0   0   0   0   0   0   0 
0  -1   0   0   0   0   0   0 

 
 
 
+ 

0   0   0   0   0   0   0  -1 
0   0   0   0   0   0   1   0 
0   0   0   0   0  -1   0   0 
0   0   0   0   1   0   0   0 
0   0   0   1   0   0   0   0 
0   0  -1   0   0   0   0   0 
0   1   0    0   0   0   0   0 
-1 0   0    0   0   0   0  0 

 
 1 H81 H82 H83 H84 H85 H86 H87 

1 1 H81 H82 H83 H84 H85 H86 H87 
H81 H81 -1 H83 - H82 H85 - H84 H87 - H86 
H82 H82 H83 -1 - H81 - H86 - H87 H84 H85 
H83 H83 - H82 - H81 1 - H87 H86 H85 - H84 
H84 H84 H85 H86 H87 -1 - H81 - H82 - H83 
H85 H85 - H84 H87 - H86 - H81 1 - H83 H82 
H86 H86 H87 - H84 - H85 H82 H83 -1 - H81 
H87 H87 - H86 - H85 H84 H83 - H82 - H81 1 

 
Figure 10: Upper rows: the decomposition of the matrix H8 (from Figure 1) as sum of 8 matrices: 

H8 = H80+H81+H82+H83+H84+H85+H86+H87. Bottom row: the multiplication table of these 8 matrices H80, H81, 
H82, H83, H84, H85, H86, H87, which is identical to the multiplication table of biquaternions by Hamilton (or 

Hamiltons’ quaternions over the field of complex numbers). H80 is identity matrix 
 
Here for the (8*8)-genomatrix H8 we have received the interesting result: the 

sum of two different 4-dimensional quaternions by Hamilton with unit coordinates (they 
belong to two different matrix representations of Hamiltons’ quaternions) generates the 
8-dimensional biquaternion with unit coordinates. This result resembles the results, 
regarding genetic matrices with internal complementarities described above; it 
resembles a situation when a union of Yin and Yang (or a union of male and female 
beginnings, or a fusion of male and female gametes) generates a new organism. 
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3. THE RADEMACHER MATRICES R4 AND R8 

Now let us pay attention to Rademacher matrices R4 and R8 (Figure1) that belong to the 
second important type of genetic matrices with internal complementarities. Let us 
initially analyze the matrix R4, which is the sum of two matrices RL4 and RR4 (Figure 
11). 

 
   R4 = RL4 + RR4     = 

1 0 1 0  
+ 

0 1 0 -1 
-1 0 -1 0 0 1 0 -1 
1 0 1 0 0 -1 0 1 
-1 0 -1 0 0 -1 0 1 

 
 

RL4 = RL40 + RL41 = 
1 0 0 0  

+ 
0 0 1 0 

-1 0 0 0 0 0 -1 0 
0 0 1 0 1 0 0 0 
0 0 -1 0 -1 0 0 0 

 
 
RR4 = RR40 + RR41   = 

0 1 0 0  
+ 

0 0 0 -1 
0 1 0 0 0 0 0 -1 
0 0 0 1 0 -1 0 0 
0 0 0 1 0 -1 0 0 

Figure 11: upper row: the representation of the matrix R4 as sum of matrices RL4 and RR4.             
Other rows: representations of matrices RL4 and RR4 as sums of matrices RL40, RL41, RR40 and RR41. 

The (4*4)-matrix RL4 is the sum of two matrices RL40 and RL41 (Figure 11), the set of 
which is closed in relation to multiplication and defines the multiplication table of these 
matrices (Figure 12). This table is identical to the well-known multiplication table of 
split-complex numbers (their synonyms are Lorentz numbers, hyperbolic numbers, 
perplex numbers, double numbers, etc. - http://en.wikipedia.org/wiki/Split-
complex_number). Split-complex numbers are a two-dimensional commutative algebra 
over the real numbers. 

 RL40  RL41    A0 0   A2 0 
RL40  RL40  RL41 ;  DL = A0* RL40+A2*RL41 = -A0 0 -A2 0 
RL41 RL41 RL40    A2 0   A0 0 
    -A2 0 -A0 0 
        
           A0 0 -A2 0 
                 DL

-1   =   (A0
2-A2

2)-1  * -A0 0  A2 0 
    -A2 0  A0 0 
     A2 0 -A0 0 
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Figure 12: the multiplication table of two (4*4)-matrices RL40 and RL41 (Figure 11), which is a set 
of basic elements of split-complex numbers DL = A0*RL40+A2*RL41, where A0, A2 are real numbers. The 

matrix RL40 represents the real unit for this matrix set.  If A0 ≠ A2, the matrix DL
-1 is the inverse matrix for DL 

by definition on the base of the equation DL*DL
-1= RL40 

The set of (4*4)-matrices DL = A0*RL40+A2*RL41, where A0, A2 are real numbers, 
represents split-complex numbers in the special (4*4)-matrix form (Figure 12). The 
classical identity matrix E=[1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1] is absent in the set of 
matrices DL, each of which has zero determinant. Consequently the usual notion of the 
inverse matrix DL

-1 (as DL*DL
-1=E) can’t be defined in relation to the classical identity 

matrix E in accordance with the famous theorem about inverse matrices for matrices 
with zero determinant (Bellman, 1960, Chapter 6, § 4). But the set of matrices DL has 
the matrix RL40 which possesses all properties of identity matrix (or the real unit) for 
any member of this set. In the frame of the set of matrices DL, where the matrix RL40 
represents the real unity, one can define the special notion of inverse matrix DL

-1 for any 
non-zero matrix DL in relation to the matrix RL40 on the base of equations: DL*DL

-1 = 
DL

-1*DL
 = RL40 (Figure 12). From this point of view, the genetic (4*4)-matrix RL4 is the 

split-complex number with unit coordinates (A0=A2=1). So, we reveal that                    
4-dimensional spaces can contain 2-parametric subspaces, in which split-complex 
numbers exist in the form of (4*4)-matrices DL. It is well known that in mathematics 
split-complex numbers are traditionally represented in the form of (2*2)-matrix           
[a0 a1; a1 a0], where a0, a1 are real numbers (http://en.wikipedia.org/wiki/Split-
complex_number). 

A similar situation holds true for (4*4)-matrices RR4 = RR40 + RR41 (from Figure 11). 
The set of two matrices RR40 and RR41 is also closed in relation to multiplication; it 
gives the multiplication table (Figure 13) which is also identical to the multiplication 
table of split-complex numbers. The set of (4*4)-matrices DR = a1*RR40+a3*RR41, 
where a1, a3 are real numbers, represents split-complex numbers in the (4*4)-matrix 
form (Figure 13). The matrix RR40 plays a role of the real unit in this set of matrices DR. 
In the case a1 ≠ a3, the matrix DR

-1 (Figure 13) is the inverse matrix for DR by definition 
on the base of equations DR*DR

-1 = DR
-1*DR = RR40. 

 
 
 RR40 RR41  0 A1 0 -A3 
RR40 RR40 RR41 ;     DR = A1*RR40+A3*RR41 = 0 A1 0 -A3 
RR41 RR41 RR40  0 -A3 0 A1 
    0 -A3 0 A1 
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    0 A1 0 A3 
                   DR

-1  =  (A1
2-A3

2)-1  * 0 A1 0 A3 
    0 A3 0 A1 
    0 A3 0 A1 

Figure 13: The multiplication table of two (4*4)-matrices RR40 and RR41, which is a set of basic elements of 
split-complex numbers DR = A1*RR40+A3*RR41, where A1, A3 are real numbers. The matrix RR40 represents 
the real unit in this matrix set.  If A1 ≠ A3, the matrix DR

-1 is the inverse matrix for DR by definition on the 
base of the equation DL*DL

-1 = RR40 

The initial matrix R4 can be also decomposed in another way by means of the dyadic-
shift decomposition as it was done for the matrix H4 on Figure 2. Figure 14 shows such 
dyadic-shift decomposition R4 = R04+R14+R24+R34 when 4 sparse matrices R04, R14, 
R24 and R34 arise (R04 is identity matrix). The set of these matrices R04, R14, R24 and 
R34 is closed in relation to multiplication and it defines the multiplication table on 
Figure 14. This multiplication table is identical to the multiplication table of                    
4-dimensional hypercomplex numbers that are termed as split-quaternions by J.Cockle 
and are well known in mathematics and physics (http://en.wikipedia.org/wiki/Split-
quaternion). From this point of view, the matrix R4 is split-quaternion with unit 
coordinates. 

  1   1  1 -1 
-1   1 -1 -1 
  1 -1  1   1 
-1 -1 -1  1 

 
= 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

 
+ 

 0  1  0  0 
-1 0  0  0 
 0  0  0  1 
 0  0 -1 0 

 
+ 

0  0  1  0 
0  0  0 -1 
1  0  0  0 
0 -1  0  0 

 
+ 

0  0  0 -1 
0  0 -1  0 
0 -1  0  0 
-1 0  0  0 

 
 R04 R14 R24 R34 
R04 R04 R14 R24 R34 
R14 R14 -R04 R34 - R24 
R24 R24 - R34 R04 - R14 
R34 R34 R24 R14 R04 

Figure 14: upper row: the dyadic-shift decomposition R4 = R04+R14+R24+R34. Bottom row: the 
multiplication table of the sparse matrices R04, R14, R24 and R34, which is identical to the multiplication table 
of split-quaternions by J.Cockle (http://en.wikipedia.org/wiki/Split-quaternion). R04 is identity matrix, which 

plays a role of the real unit in this form of split-quaternions by Cockle. 

So we have received the interesting result: the sum of two 2-dimensional split-complex 
numbers R4L and R4R with unit coordinates (they belong to two different matrix types of 
split-complex numbers) generates the 4-dimensional split-quaternion with unit 
coordinates. It resembles again a situation when a union of Yin and Yang (a union of 
female and male beginnings, or a fusion of male and female gametes) generates a new 



 SERGEY V. PETOUKHOV 14 

organism. In particular, it means that the matrix R4 is one of matrices with internal 
complementarities.  

Let us return now to the (8*8)-matrix R8 (Figure 1) and demonstrate that it is also a 
matrix with internal complementarities. Figure 15 shows the matrix R8 as sum of 
matrices R8L and R8R. 

                                                              R8 = RL8 + RR8 = 
1 0 1 0 1 0 -1 0  0 1 0 1 0 1 0 -1 
1 0 1 0 1 0 -1 0  0 1 0 1 0 1 0 -1 
-1 0 1 0 -1 0 -1 0  0 -1 0 1 0 -1 0 -1 
-1 0 1 0 -1 0 -1 0 + 0 -1 0 1 0 -1 0 -1 
1 0 -1 0 1 0 1 0  0 1 0 -1 0 1 0 1 
1 0 -1 0 1 0 1 0  0 1 0 -1 0 1 0 1 
-1 0 -1 0 -1 0 1 0  0 -1 0 -1 0 -1 0 1 
-1 0 -1 0 -1 0 1 0  0 -1 0 -1 0 -1 0 1 

Figure 15: the matrix R8 consists of two complementary parts RL8 and RR8 

Figure 16 shows a decomposition of the matrix RL8 (from Figure 15) as a sum of 4 
matrices: RL8 = RL80 + RL81 + RL82 + RL83. The set of matrices RL80, RL81, RL82 and 
RL83 is closed in relation to multiplication and defines the multiplication table identical 
to the same multiplication table of split-quaternions by Cockle. General expression for 
split-quaternions in this case can be written as SL = a0*RL80 + a1*RL81 + a2*RL82 + 
a3*RL83, where a0, a1, a2, a3 are real numbers. From this point of view, the (8*8)-
genomatrix RL8 is split-quaternion by Cockle with unit coordinates. 
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 RL80 RL81 RL82 RL83 

RL80 RL80 RL81 RL83 RL83 
RL81 RL81 - RL80 RL83 - RL82 
RL82 RL82 - RL83 RL80 - RL81 
RL83 RL83 RL82 RL81 RL80 

Figure 16: Upper rows: the decomposition of the matrix RL8 (from Figure 15) as sum of 4 
matrices: RL8 =  RL80 + RL81 + RL82 + RL83. Bottom row: the multiplication table of these 4 matrices RL80, 

RL81, RL82 and RL83, which is identical to the multiplication table of split-quaternions by J.Cockle. RL80 
represents the real unit for this matrix set 

 

The similar situation holds for the matrix RR8 (from Figure 15). Figure 17 shows a 
decomposition of the matrix RR8 as a sum of 4 matrices: RR8 = RR80 + RR81 + RR82 + 
RR83. The set of matrices RR80, RR81, RR82 and RR83 is closed in relation to 
multiplication and defines the multiplication table that is identical to the same 
multiplication table of split-quaternions by Cockle. General expression for split-
quaternions in this case can be written as SR = a0*RR80 + a1*RR81 + a2*RR82 + a3*RR83, 
where a0, a1, a2, a3 are real numbers. From this point of view, the (8*8)-matrix RR8 is 
the split-quaternion with unit coordinates.              

      
 

 

 1 0  1 0  1 0  -1 0 
 1 0  1 0  1 0  -1 0 
-1 0  1 0 -1 0 -1 0 
-1 0  1 0 -1 0 -1 0 
 1 0 -1 0  1 0   1 0 
 1 0 -1 0  1 0   1 0 
-1 0 -1 0 -1 0  1 0 
-1 0 -1 0 -1 0  1 0 

 
 
 
= 

1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 

 
 
 
+ 

 0 0 1 0  0  0  0 0 
 0 0 1 0  0  0  0 0 
-1 0 0 0  0  0  0 0 
-1 0 0 0  0  0  0 0 
 0 0 0  0  0  0  1 0 
 0 0 0  0  0  0  1 0 
 0 0 0  0 -1  0  0 0 
 0 0 0  0 -1  0  0 0 

 

   
  

 
 
+ 

0 0  0 0 1 0  0 0 
0 0  0 0 1 0  0 0 
0 0  0 0 0 0 -1 0 
0 0  0 0 0 0 -1 0 
1 0  0 0 0 0  0 0 
1 0  0 0 0 0  0 0 
0 0 -1 0 0 0  0 0 
0 0 -1 0 0 0  0 0 

 
 
 
+
  

 0 0  0 0  0 0 -1 0 
 0 0  0 0  0 0 -1 0 
 0 0  0 0 -1 0  0 0 
 0 0  0 0 -1 0  0 0 
 0 0 -1 0  0 0  0 0 
 0 0 -1 0  0 0  0 0 
-1 0  0 0  0 0  0 0 
-1 0  0 0  0 0  0 0 
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0   1 0  1 0   1 0 -1 
0   1 0  1 0   1 0 -1 
0 -1 0  1 0  -1 0 -1 
0 -1 0  1 0  -1 0 -1 
0  1 0 -1 0   1 0   1 
0  1 0 -1 0   1 0   1 
0 -1 0 -1 0 -1 0  1 
0 -1 0 -1 0 -1 0  1 

 
 
 
 
= 

0 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 

 
 
 
 
+ 

0  0 0 1 0  0 0 0 
0  0 0 1 0  0 0 0 
0 -1 0 0 0  0 0 0 
0 -1 0 0 0  0 0 0 
0  0 0 0 0  0 0 1 
0  0 0 0 0  0 0 1 
0  0 0 0 0 -1 0 0 
0  0 0 0 0 -1 0 0 

     
  

 
 
 
+ 

0 0 0  0 0 1 0  0 
0 0 0  0 0 1 0  0 
0 0 0  0 0 0 0 -1 
0 0 0  0 0 0 0 -1 
0 1 0  0 0 0 0  0 
0 1 0  0 0 0 0  0 
0 0 0 -1 0 0 0  0 
0 0 0 -1 0 0 0  0 

 
 
 
 
+ 

0 0 0 0 0 0 0 -1 
0 0 0 0 0 0 0 -1 
0 0 0 0 0 -1 0 0 
0 0 0 0 0 -1 0 0 
0 0 0 -1 0 0 0 0 
0 0 0 -1 0 0 0 0 
0 -1 0 0 0 0 0 0 
0 -1 0 0 0 0 0 0  

 
 RR80 RR81 RR82 RR83 

RR80 RR80 RR81 RR82 RR83 
RR81 RR81 - RR80 RR83 - RR82 
RR82 RR82 - RR83 RR80 - RR81 
RR83 RR83 RR82 RR81 RR80 

 

Figure 17: upper rows: the decomposition of the matrix RR8 (from Figure 15) as the sum of 4 matrices:           
RR8 = RR80 + RR81 + RR82 + RR83. Bottom row: the multiplication table of these 4 matrices RR80, RR81, RR82 

and RR83, which is identical to the multiplication table of split-quaternions by Cockle. RR80 represents the real 
unit here. 

 

The initial (8*8)-matrix R8 (Figure 1) can be also decomposed in another way by means 
of the dyadic-shift decomposition as it was done for the matrix H8 on Figure 10. Figure 
18 shows the case of such dyadic-shift decomposition R8 = R08+R18+R28+R38+R48 

+R58+R68+R78, when 8 sparse matrices R08, R18, R28, R38, R48, R58, R68, R78 arise 
(R08 is identity matrix). The set R08, R18, R28, R38, R48, R58, R68, R78 is closed in 
relation to multiplication and defines the multiplication table on Figure 18. This 
multiplication table is identical to the multiplication table of 8-dimensional 
hypercomplex numbers that are termed as bi-split-quaternions by Cockle (or split-
quaternions over the field of complex numbers). General expression for bi-split-
quaternions in this case can be written as S8 = a0*R08+a1*R18+a2*R28 +a3*R38+a4*R48 
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+a5*R58+a6*R68+a7*R78, where a0, a1, a2, a3, a4, a5, a6, a7 are real numbers. From this 
point of view, the (8*8)-genomatrix R8 is bi-split-quaternion with unit coordinates.  

 
R8 = R08+R18+R28+R38+R48+R58+R68+R78 = 
 

1  0  0  0  0  0  0  0 
0  1  0  0  0  0  0  0 
0  0  1  0  0  0  0  0 
0  0  0  1  0  0  0  0 
0  0  0  0  1  0  0  0 
0  0  0  0  0  1  0  0 
0  0  0  0  0  0  1  0 
0  0  0  0  0  0  0  1 

 
 
 
+ 

0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 

 
 
 
+ 

0   0  1  0  0  0  0  0 
0   0  0  1  0  0  0  0 
-1  0  0  0  0  0  0  0 
0  -1  0  0  0  0  0  0 
0   0  0  0  0  0  1  0 
0   0  0  0  0   0  0  1 
0   0  0  0  -1  0  0  0 
0   0  0  0  0  -1  0  0 

 
 
 
+ 

0  0  0  1  0  0  0  0 
0  0  1  0  0  0  0  0 
0  -1 0  0  0  0  0  0 
-1 0  0   0  0  0  0  0 
0  0  0   0  0  0  0  1 
0  0  0   0  0  0  1  0 
0  0  0   0  0  -1 0  0 
0  0   0  0  -1 0  0  0 

 
 
 
+ 

 
0  0  0  0 1  0  0  0 
0  0  0  0 0  1  0  0 
0  0  0  0 0  0 -1 0 
0  0  0  0 0  0  0 -1 
1  0  0  0 0  0  0  0 
0  1  0  0 0  0  0  0 
0  0 -1 0 0  0  0  0 
0  0 0 -1 0  0  0  0 

 
 
 
+ 

0  0  0  0  0  1  0  0 
0  0  0  0  1  0  0  0 
0  0  0  0  0  0  0 -1 
0  0  0  0  0  0 -1 0 
0  1  0  0  0  0  0 0 
1  0  0  0  0  0  0 0 
0  0  0 -1 0  0  0 0 
0  0 -1 0 0  0  0  0 

 
 
 
+ 

0  0  0  0  0  0  -1  0 
0  0  0  0  0  0  0  -1 
0  0  0  0 -1  0  0  0 
0  0  0  0  0 -1  0  0 
0  0 -1  0  0  0  0  0 
0  0  0 -1  0  0  0  0 
-1 0 0  0  0  0  0  0 
0 -1 0  0  0  0  0   0 

 
 
 
+ 

0  0  0  0  0  0  0  -1 
0  0  0  0  0  0 -1  0 
0  0  0  0  0 -1  0  0 
0  0  0  0 -1  0  0  0 
0  0  0 -1  0  0  0  0 
0  0 -1  0  0  0  0  0 
0 -1  0  0  0  0  0  0 
-1 0  0  0  0  0  0  0 

 
 R08 R18 R28 R38 R48 R58 R68 R78 

R08 R08 R18 R28 R38 R48 R58 R68 R78 
R18 R18 R08 R38 R28 R58 R48 R78 R68 
R28 R28 R38 - R08 - R18 R68 R78 - R48 - R58 
R38 R38 R28 - R18 - R08 R78 R68 - R58 - R48 
R48 R48 R58 - R68 - R78 R08 R18 - R28 - R38 
R58 R58 R48 - R78 - R68 R18 R08 - R38 - R28 
R68 R68 R78 R48 R58 R28 R38 R08 R18 
R78 R78 R68 R58 R48 R38 R28 R18 R08 

 

Figure 18: Upper rows: the decomposition of the matrix R8 (from Figure 1) as sum of 8 matrices: R8 = 
R08+R18+R28+R38+R48+R58+R68+R78. Bottom row: the multiplication table of these 8 matrices R08, R18, 

R28, R38, R48, R58, R68 and R78, which is identical to the multiplication table of bi-split-quaternions by 
Cockle. R08 is identity matrix and represents the real unit here. 

Here for the (8*8)-genomatrix R8 we have received the interesting result: the sum of 
two different 4-dimensional split-quaternions by Cockle with unit coordinates (they 
belong to two different matrix types of split-quaternion numbers) generates the 8-
dimensional bi-split-quaternion with unit coordinates. This result resembles the above-
described result about the sum of 2-dimensional split-complex numbers with unit 
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coordinates that generates the 4-dimensional split-quaternion with unit coordinates 
(Figures 12-14). It also resembles a situation when a union of Yin and Yang (a union of 
male and female beginnings or a fusion of male and female gametes) generates a new 
organism.  

4. MATRICES OF GENETIC DUPLETS AND TRIPLETS 

Theory of noise-immunity coding is based on matrix methods. For example, matrix 
methods allow transferring high-quality photos of Mar’s surface via millions of 
kilometers of strong interference. In particularly, Kronecker families of Hadamard 
matrices are used for this aim. Kronecker multiplication of matrices is the well-known 
operation in fields of signals processing technology, theoretical physics, etc. It is used 
for transition from spaces with a smaller dimension to associated spaces of higher 
dimension. 

By analogy with theory of noise-immunity coding, the 4-letter alphabet of RNA 
(adenine A, cytosine C, guanine G and uracil U) can be represented in a form of the 
(2*2)-matrix [C U; A G] (Figure 19) as a kernel of the Kronecker family of matrices [C 
U; A G](n), where (n) means a Kronecker power (Figure 19). Inside this family, this 4-
letter alphabet of monoplets is connected with the alphabet of 16 duplets and 64 triplets 
by means of the second and third Kronecker powers of the kernel matrix: [C U; A G](2) 
and [C U; A G](3), where all duplets and triplets are disposed in a strict order (Figure 
19). We begin with the alphabet A, C, G, U of RNA here because of mRNA-sequences 
of triplets define protein sequences of amino acids in a course of its reading in 
ribosomes (below we will separately consider the case of DNA with its own alphabet).  

Figure 19 contains not only 64 triplets but also amino acids and stop-codons encoded by 
the triplets in the case of the Vertebrate mitochondrial genetic code that is the most 
symmetrical among known variants of the genetic code 
(http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi). One can see on Figure 19 
that in the matrix [C U; A G](3) the set of columns with even numeration 0, 2, 4, 6 and 
the set of columns with odd numeration 1, 3, 5, 7 have the same collection of amino 
acids and stop-codons. In other words, the nature has constructed the distribution of 
amino acids and stop-codons in accordance with the principle of the matrix with internal 
complementarity. This fact is only one of evidences that the described matrices with 
internal complementarities are the mathematical patterns of the genetic coding system 
(the mathematical partners of the genetic code). 
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Let us explain black-and-white mosaics of [C U; A G](2) and [C U; A G](3) (Figure 19) 
which reflect important features of the genetic code. These features are connected with a 
specificity of reading of mRNA-sequences in ribosomes to define protein sequences of 
amino acids (this is the reason, why we use the alphabet A, C, G, U of RNA in matrices 
on Figure 19; below we will consider the case of DNA-sequences separately). 

 
   CC CU UC UU 
C U  CA CG UA UG 
A G  AC AU GC GU 
   AA AG GA GG 

 
CCC 
PRO 

CCU  
PRO 

CUC 
LEU 

CUU 
LEU 

UCC 
SER 

UCU 
SER 

UUC 
PHE 

UUU 
PHE 

CCA 
PRO 

CCG 
PRO 

CUA 
LEU 

CUG 
LEU 

UCA 
SER 

UCG 
SER 

UUA 
LEU 

UUG 
LEU 

CAC 
HIS 

CAU 
HIS 

CGC 
ARG 

CGU 
ARG 

UAC 
TYR 

UAU 
TYR 

UGC 
CYS 

UGU 
CYS 

CAA 
GLN 

CAG 
GLN 

CGA 
ARG 

CGG 
ARG 

UAA 
STOP 

UAG 
STOP 

UGA 
TRP 

UGG 
TRP 

ACC 
THR 

ACU 
THR 

AUC 
ILE 

AUU 
ILE 

GCC 
ALA 

GCU 
ALA 

GUC 
VAL 

GUU 
VAL 

ACA 
THR 

ACG 
THR 

AUA 
MET 

AUG 
MET 

GCA 
ALA 

GCG 
ALA 

GUA 
VAL 

GUG 
VAL 

AAC 
ASN 

AAU 
ASN 

AGC 
SER 

AGU 
SER 

GAC 
ASP 

GAU 
ASP 

GGC 
GLY 

GGU 
GLY 

AAA 
LYS 

AAG 
LYS 

AGA 
STOP 

AGG 
STOP 

GAA 
GLU 

GAG 
GLU 

GGA 
GLY 

GGG 
GLY 

Figure 19: the first three representatives of the Kronecker family of RNA-alphabetic matrices  [C U; A G](n). 
Black color marks 8 strong duplets in the matrix [C U; A G](2) (at the top) and 32 triplets with strong roots in 

the matrix [C U; A G](3) (bottom).  20 amino acids and stop-codons, which correspond to triplets, are also 
shown in the matrix [C U; A G](3)  for the case of the Vertebrate mitochondrial genetic code  

A combination of letters on the two first positions of each triplet is ususally termed as a 
“root” of this triplet (Konopelchenko, Rumer, 1975a,b; Rumer, 1968). Modern science 
recognizes many variants (or dialects) of the genetic code, data about which are shown 
on the NCBI’s website http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi.        
17 variants (or dialects) of the genetic code exist that differ one from another by some 
details of correspondences between triplets and objects encoded by them. Most of these 
dialects (including the so called Standard Code and the Vertebrate Mitochondrial Code) 
have the symmetrologic general scheme of these correspondences, where 32 “black” 
triplets with “strong roots” and 32 “white” triplets with “weak” roots exist (see details in 
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(Petoukhov, 2008c). In this basic scheme, the set of 64 triplets contains 16 subfamilies 
of triplets, every one of which contains 4 triplets with the same two letters on the first 
positions (an example of such subsets is the case of four triplets CAC, CAA, CAT, 
CAG with the same two letters CA on their first positions). In the described basic 
scheme, the set of these 16 subfamilies of NN-triplets is divided into two equal subsets. 
The first subset contains 8 subfamilies of so called “two-position” NN-triplets, a coding 
value of which is independent on a letter on their third position: (CCC, CCT, CCA, 
CCG), (CTC, CTT, CTA, CTG), (CGC, CGT, CGA, CGG), (TCC, TCT, TCA, TCG), 
(ACC, ACT, ACA, ACG), (GCC, GCT, GCA, GCG), (GTC, GTT, GTA, GTG), (GGC, 
GGT, GGA, GGG). An example of such subfamilies is the four triplets CGC, CGA, 
CGT, CGC, all of which encode the same amino acid Arg, though they have different 
letters on their third position. The 32 triplets of the first subset are termed as “triplets 
with strong roots” (Konopelchenko, Rumer, 1975a,b; Rumer, 1968). The following 
duplets are appropriate 8 strong roots for them: CC, CT, CG, AC, TC, GC, GT, GG 
(strong duplets). All members of these 32 NN-triplets and 8 strong duplets are marked 
by black color in the matrices [C U; A G](3) and [C U; A G](2) on Figures 19. 

      The second subset contains 8 subfamilies of “three-position” NN-triplets, the coding 
value of which depends on a letter on their third position: (CAC, CAT, CAA, CAG), 
(TTC, TTT, TTA, TTG), (TAC, TAT, TAA, TAG), (TGC, TGT, TGA, TGG), (AAC, 
AAT, AAA, AAG), (ATC, ATT, ATA, ATG), (AGC, AGT, AGA, AGG), (GAA, GAT, 
GAA, GAG). An example of such subfamilies is the four triplets CAC, CAA, CAT, 
CAC, two of which (CAC, CAT) encode the amino acid His and the other two (CAA, 
CAG) encode another amino acid Gln. The 32 triplets of the second subset are termed as 
“triplets with weak roots” (Konopelchenko, Rumer, 1975a,b; Rumer, 1968). The 
following duplets are appropriate 8 weak roots for them: CA, AA, AT, AG, TA, TT, 
TG, GA (weak duplets). All members of these 32 NN-triplets and 8 weak duplets are 
marked by white color in the matrices [C U; A G](3) and [C U; A G](2) on Figure 19. 

From the point of view of its black-and-white mosaic, each of columns of genetic 
matrices [C U; A G](2) and [C U; A G](3) has a meander-like character and coincides 
with one of Rademacher functions that form orthogonal systems and well known in 
discrete signals processing. These functions contain elements “+1” and “-1” only. Due ti 
this fact, one can construct Rademacher representations of the symbolic genomatrices 
[C U; A G](2) and [C U; A G](3) (Figure 19) by means of the following operation: each 
of black duplets and of black triplets is replaced by number “+1” and each of white 
duplets and white triplets is replaced by number “-1”. This operation leads immediately 
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to the matrices R4 and R8 from Figure 1, that are the Rademacher representations of the 
phenomenological genomatrices [C U; A G](2) and [C U; A G](3). This fact is one of 
evidences of algebraic nature of the genetic code. 

One can note that genomatrices [C U; A G](2) and [C U; A G](3) and their Rademacher 
representations R4 and R8 (Figure 1) are connected on the base of the equations (1), 
where U means Kronecker multiplication:  

R4 U [1 1; 1 1] = R8,    [C U; A G](2) U [C U; A G] = [C U; A G](3)              (1) 

Here [1 1; 1 1] is the traditional (2*2)-matrix representation of split-complex number 
with unit coordinates, that can be considered as the Rademacher representation R2 of the 
genomatrix [C U; A G]. The equations (1) testify that, in the case of RNA-alphabet, 
each of its four letters in the matrix [C U; A G] should be taken as equal to number 
“+1”: A=C=G=U=+1. They also show that Rademacher representations R2 and R4 of 
matrices [C U; A G] and [C U; A G](2) can be considered as basic due to the fact that the 
Rademacher representation R8 is deduced from them by means of their Kronecker 
multiplication. 

Now let us pay attention to the DNA alphabet (adenine A, cytosine C, guanine G and 
thymine T) and the appropriate Kronecker family of matrices [C T; A G](n). What kind 
of black-and-white mosaics (or a disposition of elements “+1” and “-1” in numeric 
representations of these symbolic matrices) can be appropriate in this case for the basic 
matrix [C T; A G] and [C T; A G](2)? The important phenomenological fact is that the 
thymine T is a single nitrogenous base in DNA which is replaced in RNA by another 
nitrogenous base U (uracil) for unknown reason (this is one of the mysteries of the 
genetic system). In other words, in this system the letter T is the opposition in relation to 
the letter U, and so the letter T can be symbolized by number “-1” (instead of number 
“+1” for U). By this objective reason, one can construct numeric representations H2 and 
H4 of mentioned matrices [C T; A G] and [C T; A G](2) by means of the following 
algorithm of transformation of black-and-white mosaics of matrices [C U; A G] and       
[C U; A G](2) from Figure 19 together with their Rademacher representations R2 and R4:      
- in matrices [C T; A G] and [C T; A G](2), each of monoplets and duplets that begin 
with the letter T, should be taken with opposite color in comparison with appropriate 
entries in matrices [C U; A G] and [C U; A G](2) from Figure 19; correspondingly 
numeric representations of these DNA-alphabetic matrices [C T; A G] and [C T; A G](2) 
reflect the new mosaics of these symbolic matrices. 
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The numeric representation H8 of the DNA-alphabetic matrix of triplets [C T; A G](3) is 
constructed on the base of equations (2) by analogy with equations (1): 

H4 U [1 -1; 1 1] = H8,    [C T; A G](2) U [C T; A G] = [C T; A G](3)              (2) 

Here [1 -1; 1 1] is the traditional (2*2)-matrix representation of complex number with 
unit coordinates. The black-and-white mosaic of the matrix [C T; A G](3) is defined by 
the disposition of numbers “+1” and “-1” in its numeric representation H8. Figure 20 
shows DNA-alphabetic matrices [C T; A G], [C T; A G](2) and [C T; A G](3) with their 
mosaics constructed by this way, which is based on the objective properties of the 
molecular-genetic system and can be used in biological computers of organisms. One 
can see that mosaics of these symbolic matrices [C T; A G](2) and [C T; A G](3) coincide 
with the disposition of numbers “+1” and “-1” in numeric matrices H4 and H8 (Figure 1) 
that can be termed as “Hadamard representations” of these genomatrices because 
matrices H4 and H8 satisfy the definition of Hadamard matrices (Petoukhov, 2008b, 
2011). 

     CCC CCT CTC CTT TCC TCT TTC TTT 
 C T   CCA CCG CTA CTG TCA TCG TTA TTG 
 A G   CAC CAT CGC CGT TAC TAT TGC TGT 
    ; CAA CAG CGA CGG TAA TAG TGA TGG 
CC CT TC TT  ACC ACT ATC ATT GCC GCT GTC GTT 
CA CG TA TG  ACA ACG ATA ATG GCA GCG GTA GTG 
AC AT GC GT  AAC AAT AGC AGT GAC GAT GGC GGT 
AA AG GA GG  AAA AAG AGA AGG GAA GAG GGA GGG 

Figure 20: the first three representatives [C T; A G], [C T; A G](2) and [C T; A G](3) of the Kronecker family 
of DNA-alphabetic matrices [C T; A G](n). Hadamard representations H4 and H8 of the symbolic matrices [C 

T; A G](2) and [C T; A G](3) with the same mosaics are shown on Figure 1    

Genetic matrices with internal complementarities resemble objects with Yin and Yang 
parts from doctrines of Ancient China. One can add here the following mathematical 
fact. The famous Yin-Yang symbol [ has a symmetrical configuration: its 180-degree 
turn changes only its black-and-white mosaic, but the new configuration of the symbol 
coincides with the initial. It is interesting that the 180-degree turn of the genetic 
matrices R4, R8, H4, H8 (Figure 1) leads to a similar result: mosaics of these matrices are 
essentially changed but the new matrices are again matrices with internal 
complementarities, algebraic properties of which coincide with the initial (the same 
multiplication tables as on Figures 9, 10, 12-14, 16-18). So, the mythological object 
allows revealing new mathematical properties of the genetic matrices in this case. 
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Phenomenology of the genetic system gives additional confirmations of its connection 
with the mosaic genomatrices [C T; A G](n), numeric representations of which posess 
internal complementarities. In matrices [C T; A G](n), let us enumerate their 2n columns 
from left to right by numbers 0, 1, 2, .., 2n-1 and then consider two sets of n-plets 
(oligonucleotides) in each of matrices [C T; A G](n): 1) the first set contains all n-plets 
from columns with even numeration 0, 2, 4, … (this set is conditionally termed as the 
even-set or the Yin-set); 2) the second set contains all n-plets from columns with odd 
numeration 1, 3, 5, … (this set is conditionally termed as the odd-set or the Yang-set). 

For example, the genomatrix [C T; A G](3) (Figure 19) contains the even-set of 32 
triplets in its columns with even numerations 0, 2, 4, 6 (CCC, CCA, CAC, CAA, ACC, 
ACA, AAC, AAA, CTC, CTA, CGC, CGA, ATC, ATA, AGC, AGA, TCC, TCA, 
TAC, TAA, GCC, GCA, GAC, GAA, TTC, TTA, TGC, TGA, GTC, GTA, GGC, 
GGA) and the odd-set of 32 triplets in its columns with odd numerations 1, 3, 5, 7 
(CCT, CCG, CAT, CAG, ACT, ACG, AAT, AAG, CTT, CTG, CGT, CGG, ATT, 
ATG, AGT, AGG, TCT, TCG, TAT, TAG, GCT, GCG, GAT, GAG, TTT, TTG, TGT, 
TGG, GTT, GTG, GGT, GGG). One can show, for example, that the structure of the 
whole human genome is connected with the equal devision of the whole set of 64 
triplets into the even-set of 32 triplets and the odd-set of 32 triplets. Really, let us 
calculate total quantities (frequencies Feven and Fodd) of members of these two sets of 
triplets in the whole human genome that contains the huge number 2.843.411.612 
(about three billion) triplets. The initial data about this genome (Figure 21) are taken by 
the author from the article (Perez, 2010). Very different frequencies of different triplets 
are represented in this genome. For example, the frequency of the triplet CGA is equal 
to 6.251.611 and the frequency of the triplet TTT is equal to 109.591.342; they differ in 
18 times approximately. But our result of the calculation shows that the total quantities 
of members of the even-set (Feven) and of the odd-set (Fodd) in the whole human genome 
are equal to each other with a precision within 0,12%: 

Feven = 1.420.853.821 for the even-set of 32 triplets;   

Fodd = 1.422.557.791 for the odd-set of 32 triplets.  

One should note that the work (Perez, 2010, Table 10) shows another variant of division 
of the set of 64 triplets into two other subsets with 32 triplets in each not on the basis of 
the matrix approach but on the base of using a traditional table of triplets and a principle 
of “codons and their mirror-codons”. This variant also reveals an approximate equality 
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of quantities of members of these two subsets with a high precision for the case of the 
whole human genome. 

 
 

TRIPLET 
TRIPLET 

FREQUENCY 
 

TRIPLET 
TRIPLET 

FREQUENCY 
 

TRIPLET 
TRIPLET 

FREQUENCY 
 

TRIPLET 
TRIPLET 

FREQUENCY 
AAA 109143641 CAA 53776608 GAA 56018645 TAA 59167883 
AAC 41380831 CAC 42634617 GAC 26820898 TAC 32272009 
AAG 56701727 CAG 57544367 GAG 47821818 TAG 36718434 
AAT 70880610 CAT 52236743 GAT 37990593 TAT 58718182 
ACA 57234565 CCA 52352507 GCA 40907730 TCA 55697529 
ACC 33024323 CCC 37290873 GCC 33788267 TCC 43850042 
ACG 7117535 CCG 7815619 GCG 6744112 TCG 6265386 
ACT 45731927 CCT 50494519 GCT 39746348 TCT 62964984 
AGA 62837294 CGA 6251611 GGA 43853584 TGA 55709222 
AGC 39724813 CGC 6737724 GGC 33774033 TGC 40949883 
AGG 50430220 CGG 7815677 GGG 37333942 TGG 52453369 
AGT 45794017 CGT 7137644 GGT 33071650 TGT 57468177 
ATA 58649060 CTA 36671812 GTA 32292235 TTA 59263408 
ATC 37952376 CTC 47838959 GTC 26866216 TTC 56120623 
ATG 52222957 CTG 57598215 GTG 42755364 TTG 54004116 
ATT 71001746 CTT 56828780 GTT 41557671 TTT 109591342 

Figure 25: quantities of repetitions of each triplet in the whole human genome (from [Perez, 2010]) 

More general confirmation of genetic importance of the structure of genomatrices with 
internal complementarities for long nucleotide sequences was revealed by the results of 
the study of the Symmetry Principle № 6 from the work (Petoukhov, 2008c, 6th version, 
section 11), where a special notion of fractal genetic nets for long nucleotide sequences 
were used in contrast to this article.  Now we propose to use the relevant 
phenomenologic data for justification and development of the new idea: the described 
matrices with internal complementarities are important algebraic patterns for 
structurization of the genetic coding system, the nature of which has algebraic bases. 

The described connection between the genetic system and matrices with internal 
complementarities is associated with the Plato’s conception about androgynes. In 
accordance with this ancient conception, in primal times people had doubled bodies. But 
at one moment the gods have punished them by splitting them in half. Ever since that 
time, people run around saying they are looking for their other half because they are 
really trying to recover their primal nature 
(http://en.wikipedia.org/wiki/Symposium_(Plato). This conception is frequently used in 
discussions on important facts of embryology and other modern scientific fields about 
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hermaphroditism including the embryological principle of primordial hermaphroditism, 
etc. (Dreger, 1998; Money, 1990, etc.). Taking the Plato’s conception into account, 
genetic matrices with internal complementarities can be also termed as “androgynous 
matrices”. Results of our researches lead to the idea that phenomena of 
hermaphroditism have a basic analogue at the molecular-genetic level. These results can 
be related with biological problems of genetically inherited symmetries and 
dissymmetry (Darvas, 2007; Gal, 2011; Hellige, 1993).  

5. SOME CONCLUDING REMARKS 

In the beginning of 19-th century, there was a belief was about the existence of one 
arithmetic that is true for all natural systems. But after the discovery of quaternions by 
Hamilton, the science has been compelled to refuse the former belief about existence of 
only one true arithmetic/algebra in the world (see (Kline, 1980)). It has recognized, that 
various natural systems can have not only their own geometry (Euclidean or non-
Euclidean geometries), but also their own algebra (arithmetic of multi-dimensional 
numbers). If the scientist takes inadequate algebra to model a natural system, he/she can 
repeat the impressive example by Hamilton, who has wasted 10 years to solve the task 
of 3D space transformations on the bases of inadequate 3-dimensional algebras (this 
task needs the 4-dimensional algebra of Hamilton’s quaternions). Modern theoretical 
physics includes, as one of its main parts, a great number of attempts to reveal what 
kinds of multi-dimensional numeric systems correspond to ensembles of relations in 
concrete physical systems.  

The results of our researches discover that relations in the genetic coding system 
correspond to the described algebraic system of matrices with internal 
complementarities. If the researcher does not take into account this fact and this special 
mathematics, he/she runs the risk of wasting a lot of time and effort because of the 
application of inadequate approaches to study algebraic properties of the genetic system. 

In particularly, this article shows the connection of the genetic coding system with 
quaternions by Hamilton. Hamilton quaternions are closely related to the Pauli 
matrices, the theory of the electromagnetic field (Maxwell wrote his equation on the 
language of Hamilton quaternions), the special theory of relativity, the theory of spins, 
quantum theory of chemical valency, etc. In the twentieth century thousands of works 
were devotes to quaternions in physics  [http://arxiv.org/abs/math-ph/0511092].  Now 
Hamilton quaternions are manifested in the genetic code system. Our scientific direction 



 SERGEY V. PETOUKHOV 26 

- "matrix genetics" - has led to the discovery of an important bridge among physics, 
biology and computer science for their mutual enrichment. In addition, our study 
provides a new example of the inconceivable effectiveness of mathematics: abstract 
mathematical structures derived by mathematicians at the tip of the pen 160 years ago, 
are embodied inside the molecular-genetic system which is the informational basis of 
living matter.  And the fact that mathematics is opened by means of painful reflection 
(like Hamilton, who has spent 10 years of continuous thought to discover his 
quaternions) is already represented in the genetic coding system. 

The described genetic matrices with internal complementarities (or “androgenous 
matrices”) posess many other interesting mathematical properties related to cyclic and 
dyadic shifts, multiplications of these matrices, Kronecker families of matrices R4U[1 
1; 1 1](n) and H4U[1 -1; 1 1](n), dichotomous trees of different 2n-dimensional numbers, 
rotational transformations of these numeric genomatrices into new numeric 
genomatrices with internal complementarities, etc. A set of (2n*2n)-matrices with 
internal complementarities contains a huge quantity of different types of matrix 
representations of complex numbers (or relevant algebraic fields 
(http://en.wikipedia.org/wiki/Field_(mathematics)) and of split-complex numbers that 
didn’t specially studied in mathematics previously, as the author can judge. The relevant 
2n-dimensional numeric systems, including the said plurality of complex and split-
complex numbers and their extensions, have perspectives to be applied in mathematical 
natural sciences and signals processing. Here one can remember the statement: 
“Profound study of nature is the most fertile source of mathematical discoveries” 
(Fourier, 2006). The discovery of genetic importance of matrices with internal 
complementarities gives us a possibility to divide sets of amino acids and stop-signals in 
interesting sub-sets in accordance with the structure of the genomatrix [C T; A G](3); it 
also presents new approaches to study proteins. One should note that phenomena of 
complementarities play a basic role at different genetic levels. We are hoping to expend 
this and similar topics in future publications. 

The notion of number is one of the main notions of mathematics. In a long evolution of 
this notion, many kinds of multi-dimensional numerical systems have appeared. 
Complex numbers and split-complex numbers occupy a particularly important place in 
mathematics and mathematical natural sciences. For example, complex numbers have 
appeared as magic instruments for development of theories and calculations in the field 
of problems of heat, light, sounds, vibrations, elasticity, gravitation, magnetism, 
electricity, liquid streams, and phenomena of a micro-world. These complex numbers 
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are mathematical basis of quantum mechanics and of many other branches of sciences. 
For example, the Schrödinger equation contains the imaginary unit, and the wave 
functions of quantum mechanics are complex-valued. This article shows that many 
kinds of complex numbers and split-complex numbers exist, which are connected with 
the genetic matrices. One can think that this splitting of numeric basis of mathematical 
natural sciences lead to a relevant splitting in mathematical natural sciences. For 
example, one can ask what kinds of complex numbers should be used in the 
Schrödinger equation? Or can different types of wave functions of quantum mechanics 
exist, which correspond to different kinds of complex numbers? In our opinion, such 
questions should be deeply analyzed in future.  

This article proposes a new mathematical approach to study “a partnership between 
genes and mathematics” (see Section 1 above). In the author’s opinion, this kind of 
mathematics is beautiful and it can be used for further developing of algebraic biology 
and theoretical physics in accordance with the famous statement by P.Dirac, who taught 
that a creation of a physical theory must begin with the beautiful mathematical theory: 
“If this theory is really beautiful, then it necessarily will appear as a fine model of 
important physical phenomena. It is necessary to search for these phenomena to 
develop applications of the beautiful mathematical theory and to interpret them as 
predictions of new laws of physics” (Arnold, 2007). According to Dirac, all new 
physics, including relativistic and quantum, are developing in this way. 

Results of matrix genetics lead to the idea that the structure of the genetic coding system 
is dictated by patterns of described numeric genomatrices; here one can remember the 
famous Pythagorean statement that “numbers rule the world" with the refinement that 
we should talk now about multi-dimensional numbers. 
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