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oscillatory processes. From the formal point of view, biological organism is an oscillatory system with a
great number of degrees of freedom. Such systems are studied in the theory of oscillations using matrix
mathematics of their resonance characteristics. This study is devoted to a new approach for modeling
genetically inherited structures and processes in living organisms using mathematical tools of the theory

2?;1 ‘Zgris; of resonances. This approach reveals hidden relationships in a number of genetic phenomena and gives
Resonances rise to a new class of bio-mathematical models, which contribute to a convergence of biology with physics
Tensor product of matrices and informatics. In addition some relationships of molecular-genetic ensembles with mathematics of
Noise-immunity coding noise-immunity coding of information in modern communications technology are shown. Perspectives
Vibrational mechanics of applications of the phenomena of vibrational mechanics for modeling in biology are discussed.
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1. Introduction structural chemistry is the most quoted among scientific books of
) the XX century. Its first Chapter is titled «<Resonance and chemical
The idea about the structural pattern of the observed world, bond». The theory was developed to explain the formation of hybrid

including living matter, on the basis of vibrations arises to Ancient bonds in molecules. The actual molecule, as Pauling proposed, is a
China and Ancient India. Among many works about resonances in sort of hybrid, a structure that resonates between the two alterna-
different systems, the theory of resonance of Linus Pauling takes  tjve extremes; and whenever there is a resonance between the two
an important place. His book (Pauling, 1940) about this theory in  forms, the structure is stabilized. His theory uses the fundamental
principle of a minimal energy because - in resonant combining

of parts into a single unit - each of members of the ensemble
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individually. Pauling claimed that living organisms are chemical in
nature, and resonances in their molecules should be very essential
for biological phenomena.

This study continues the approach developed by Pauling and his
followers in applications to some single molecules, about an impor-
tant role of resonances in living organisms. The new in the paper
is a detection of crossing the world of genetic phenomena with
the world of classical mathematics of resonance spectra of vibra-
tion systems with many degrees of freedom. On this basis, a unified
mathematical approach is developed to the analysis of a number of
systems of genetic coding and genetic phenomena. This approach
reveals hidden relationships and regularities in these systems and
leads to a new class of bio-mathematical models using matrices of
resonances. These results support the feasibility of understanding
the genetic system and genetic phenomena on the basis of math-
ematics of special systems of resonances. Energetic principles of
biological organization are also under attention in this approach
because frequency characteristics of vibro-systems are associated
with energetics.

The proposed approach is correlated with the following situa-
tion in modern science. In the past century, science has discovered
that the molecular basis of genetic coding (DNA structures, etc.)
is identical in all species of organisms. A new understanding of
life appeared: «Life is a partnership between genes and mathematics»
(Stewart, 1999). All physiological systems of the body should be
structurally coordinated with the genetic code for their reproduc-
tions in descendants to avoid extinction. It is obvious that unifying
mathematical approaches are needed for the simulation of the
genetic unity of different structures of organism. Every organism
is endowed with the inherited ability to tune into resonances and
to use resonances as carriers of information. Our speech and singing
are examples of this because they use resonances of our voice
apparatus, which is the oscillatory system with many degrees of
freedom. According to the classics of structural linguistics (Roman
Jakobson and others), our language did not come out of nowhere,
but it is a superstructure over the oldest language - the genetic
language (Jakobson, 1987, 1999; Petoukhov and He, 2010). This
is one of the reasons to investigate the genetic system, including
genetic alphabets, from the standpoint of mentioned mathematics
of resonances.

The genetic coding has noise-immunity properties. According
to Mendel's law of independent assortment, information from
microworld of genetic molecules dictates macrostructures of living
organisms, despite of strong noise and interference, through many
independent channels (for instance, colors of hair, eye and skin
are inherited independently from each other). This determinism
is carried out by means of unknown algorithms of multi-channel
noise-immunity coding. Consequently, every organism is an algo-
rithmic machine of multi-channel noise-immunity coding.

To study this genetic machine it is advisable to use the theory
of noise-immunity coding, which is based on the mathematics of
matrices and which is used in engineering to solve similar prob-
lems. An example of this is the noise-immune transmission of
high-quality photographs of the surface of Mars to Earth - on the
base of mathematics of matrices - in conditions of strong distort-
ions of carrier electromagnetic signals passing through millions of
kilometers of interference. This is one of reasons for attention to the
matrix analysis of structures of the genetic code, including an anal-
ysis of the possibility of using genetic systems of resonances for the
transmission of hereditary information. The presented concept of
resonance genetics brings together biology with physics and infor-
matics since systems of resonances allow providing a reception
and transmission of information (our inherited abilities of acoustic
communication through speech and singing are examples of this).
This study reveals that the molecular genetic ensembles are struc-
turally related to known formalisms of the mathematical theory of

noise-immunity coding of information (functions of Rademacher
and Walsh, Hadamard matrices, etc.).

This study pays its main attention to matrices of vibrosystems
since we analyze organism as a set of heritable systems of reso-
nances. Vibration mechanics has many applications in engineering
due to its phenomena of a resonant synchronization of oscilla-
tory processes, vibratory separation and structuring of multiphase
systems, vibro-transportation of substances, vibro-transmission of
energy within systems and so on (Blekhman, 2000; Ganiev et al.,
2015). Our results give a basis for wider use of these phenomena
in modeling biological phenomena. They can also pull together
genetics and quantum mechanics, which is based on taking into
account frequencies and resonant characteristics of objects of the
quantum-mechanical world.

2. Background

The background of this study includes well-known genetic and
physiological phenomena, such as Mendel’s laws, molecular struc-
tures of the genetic code and psychophysical Weber-Fechner law.

The main research method to study the mentioned phenomena
is their mathematical modeling by means of classical mathematics
of theory of oscillations, allowing analyzing the resonant charac-
teristics of oscillatory systems with many degrees of freedom. Our
unified approach on the basis of matrix representations of reso-
nances allows to reveal hidden relationships in different genetic
and inherited physiological phenomena, and to discover new pos-
sibilities of convergence of biology with physics and informatics.

2.1. Oscillatory processes and matrix representations of
resonances

Any living organism is a great chorus of coordinated oscilla-
tory processes (mechanical, electrical, piezoelectrical, biochemical,
etc.), which are connected with their genetic inheritance along
chains of generations. In the ontogenetic development of an organ-
ism from embryo to adult, the number of oscillatory processes in
the chorus is greatly increased while maintaining their mutual con-
sistency not only at each stage of development, but also at different
stages. Since ancient times, chrono-medicine believes that all dis-
eases are the result of disturbances in the ordered set of oscillatory
processes.

From a formal point of view, a living organism is an oscilla-
tory system with a great number of degrees of freedom. Theory of
oscillations uses mathematics of matrices to study resonant charac-
teristics of oscillatory systems with many degrees of freedom (see,
e.g., Gladwell, 2004). We use matrices to study genetic phenomena.

Matrices possess a wonderful property to express resonances,
which sometimes is called as their main quality (Bellman, 1960;
Balonin, 2000, p. 21, 26). Physical resonance phenomenon is famil-
iar to everyone. The expression y =A*S models the transmission of a
signal S via an acoustic system A, represented by a relevant matrix
A. If an input signal is a resonant tone, then the output signal will
repeat it with a precision up to a scale factor y=A*S by analogy
with a situation when a musical string sounds in unison with the
neighboring vibrating string. In the case of a matrix A, its number of
resonant tones S; corresponds to its size. They are called its eigen-
vectors, and the scale factors A; with them are called its eigenvalues
or, briefly, spectrum A. Frequencies w; = A, (Gladwell, 2004, p. 61)
are defined as natural frequencies of the system, and the corre-
sponding eigenvectors are defined as its own forms of oscillations
(or simply, natural oscillations).

These free undamped oscillations occur in the system in the
absence of the friction forces in it and in the absence of exter-
nal excitation forces. Behavior of the system in conditions of free
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Fig. 1. Illustration of actions of the matrix A by vectors [x, y] (from Zharov (2002)).

oscillations determines by its behavior in many other conditions.
In this context, one of the main tasks of the theory of oscillations
is a determination of natural frequencies (mathematically, eigen-
values of operators) and the natural forms of oscillations of bodies.
To find all the eigenvalues A; (i.e., spectrum system A) and eigen-
vectors of the matrix A, which are defined by the matrix equation
A*s=A"s, the “characteristic equation” of the matrix A is analyzed:
det(A— AE)=0, where E - the identity matrix. The characteristic
equation together with its eigenvalues and eigenvectors is funda-
mental in the theory of mechanical, electrical and other oscillations
at macroscopic or microscopic levels. The theory of oscillations is
described in many books with some terminological differences in
them sometimes. In preparing this article, the author relied mainly
on a detailed book (Gladwell, 2004), which additionally contained
many examples of matrix analysis of oscillatory systems.

Let us remind the essence of the eigenvalues and eigenvectors
by means of the matrix A on Fig. 1, which acts on vectors [x, y].
In this case almost any vector is transformed into a new vector |[x,
y]*A with changing its direction. The exceptions are those vectors
[x, y], which belong to two orthogonal dotted lines and are called
“eigenvectors” of the matrix A; they conserve their direction under
action of the matrix A, but their lengths are scaled with factors A;,
which are called “eigenvalues” of the matrix A (each eigenvalue
corresponds to its own direction of eigenvectors).

Not all square matrices represent vibrational systems. Matrices,
which are relevant to the various problems of the theory of oscil-
lations, are usually symmetrical real matrices (Gladwell, 2004, p.
178). Such matrices have real eigenvalues and their eigenvectors
are orthogonal.

This paper considers the spectra of (2"*2") matrices, which are
generated in the result of tensor products of initial (2*2) matrices
and which are used for modeling genetic phenomena and struc-
tures. The tensor product of matrices, denoted by ®, is widely
applied in mathematics, physics, informatics, control theory, etc.
It is used for algorithmic generation of higher dimensional spaces
on the basis of spaces with smaller dimensions (reminding a growth
of degrees of freedom in the ensemble of cells of growing organism
in the result of their division). By definition, the tensor product
of two square matrices V and W of the orders m and n respec-
tively is the matrix Q=V®W = ||v;;*"W|| with the order m*n (Bellman,
1960). The tensor product has the property of inheritance of mosaic
structure of the original matrix under its tensor exponentiation.
This property connects the operation with fractals (Gazale, 1999,
Chapter X). Fig. 2 shows an example of the formation of fractal
patterns, the type of which depends on the mosaic of the original
matrix.

The tensor product of matrices is also endowed with the prop-
erty of “inheritance” of their eigenvalues: if the original matrix V
and Whave the eigenvalues A; and ; respectively, thenin their ten-
sor product Q=V®W all eigenvalues are equal to A;*; (figuratively
speaking, A; and (; are inherited in this tensor way).

Fig. 2. The example of a fractal carpet of Sierpinski produced in the tensor family
of matrices M™=[1,1,1;1,0,1; 1, 1, 1]™, where (n) means tensor power. Black and

white elements of mosaics correspond to elements 1 and 0.

maternal maternal spectrum

spectrum AB Ab aB ab
A _la AB | AABB |AABb |AaBB |AaBb
paternal A AA |Aa Ab | AABb |AAbb |AaBb |Aabb
spectrum al aA | aa AaBB |AaBb |aaBB | aaBb
ab AaBb | Aabb | aaBb | aabb

pat. sp.
0
o]

Maternal maternal gametes
gametes AB Ab aB ab
A LA £ | AB | AABB |AABb |AaBB |AaBb
paternal | A§ AA [Aa S | Ab | AABb |AAbb | AaBb |Aabb
gametes | a | aA | Aa < | aB | AaBB |AaBb |aaBB |aaBb
S| ab | AaBb |Aabb |aaBb | aabb

Fig. 3. Comparison of Punnett squares and tables of inheritance of eigenvalues of
matrices under the tensor product. Top row: examples of tables of inheritance of
eigenvalues under the tensor product in cases of (2*2)-matrices (left) and (4*4)-
matrices (cases of monohybrid and dihybrid hybridizations). Bottom row: examples
of Punnett squares for monohybrid and dihybrid crosses of organisms under the laws
of Mendel. Abbreviations «pat. sp.» and «pat. gam.» mean «paternal spectrum» and
«paternal gametes».

3. The analogy between Punnett squares and tables of the
tensor inheritance of eigenvalues of matrices

Features of the tensor inheritance of eigenvalues of the origi-
nal matrices (or “parental” matrices) in the result of their tensor
product can be conveniently represented in the form of “tables of
inheritance”. The top row of Fig. 3 shows the example of two sim-
plest cases, conventionally referred to as monohybrid and dihybrid
cases of a tensor hybridization of vibrosystems. In the first case, the
tensor product of two (2*2)-matrices Vand W, which have the same
set of eigenvalues A and q, gives the (4*4)-matrix Q= VW with its 4
eigenvalues A*A, A*a, A*a, a*a. In the second case, the tensor prod-
uct of (4*4)-matrices, having the same set of eigenvalues AB, Ab,
aB, ab, gives (16*16)-matrix with 16 eigenvalues, represented in
the tabular form.

One can see that the internal content of the table of inheritance
for the dihybrid case (Fig. 3 top) is equal to [AA, Aa; Aa, aa]®[BB, Bb;
Bb, bb]; in other words, the spectrum of the dihybrid vibrosystem is
equal to the tensor product of spectra of two monohybrid vibrosys-
tems. Similar tables of inheritance for n-hybrid cases (n=3, 4, ...)
of the tensor hybridization of vibrosystems can be constructed by
analogy.

The author notes that these tables of the tensor inheritance
for spectra of vibrosystems are identical to Punnett squares for
poly-hybrid crosses of organisms (Fig. 3). In genetics from 1906
year, Punnett squares represent Mendel’s laws of inheritance of
traits under poly-hybrid crosses. Only in Punnett squares, instead of
eigenvalues of matrices and their combinations, exist similar com-
binations of dominant and recessive alleles of genes from parent
reproductive cells — gametes.

This formal analogy — between Punnett squares of combinations
of alleles and tables of tensor inheritance of eigenvalues of matrices
of vibrosystems - generates the following idea:
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Fig. 4. Three binary sub-alphabets according to three kinds of binary-opposite traits in a set of nitrogenous bases G, A, T, C. Left: the molecular structure of these bases of DNA.
Right: the partition of the four-letter alphabet of DNA on three binary sub-alphabets in accordance with three binary-oppositional traits. Inside each binary sub-alphabet,

equivalent letters are marked by the symbol 1 or 0.

e alleles of genes and their combinations can be interpreted as
eigenvalues of (2"*2")-matrices from tensor families of matrices
of oscillatory systems. For genetic systems, this model approach
focuses an attention on the possible importance of a particu-
lar class of mutually related resonances from tensor families of
matrices, which play the role of biological “matrix archetypes.”

In this modeling approach, each allele of a gene, which has
a polyatomic structure, is characterized by a single number: an
eigenvalue of a matrix of an oscillatory system with a correspond-
ing number of degrees of freedom. It resembles the phenomenon,
known in vibration mechanics since the time of Christiaan Huy-
gens, of self-synchronization of a plurality of pendulums mounted
on a common movable platform: the self-synchronization provides
that all the pendulums begin to oscillate with a single common fre-
quency, although initially each of them could have its own natural
frequency of oscillation.

This approach is also associated with dyadic groups of binary
numbers and matrices of dyadic shifts, known in the theory of digi-
tal signal processing (Ahmed and Rao, 1975; Harmuth, 1970, 1977):
taking into account binary-oppositional attributes of homozygosity
and heterozygosity for alleles of genes, one can represent combi-
nations of individual alleles by means of symbols “0” and “1”. This
generates numerical representations of Punnett squares as matri-
ces of dyadic shifts (Petoukhov, 2011, 2014). But it is known that,
if a system shows its connection with dyadic shifts, it indicates
a connection of its structural organization (in our case, it is the
genetic system) with modulo-2 addition, which is the logical basis
of modern computers.

4. Genetic alphabets and tensor systems of resonances

The author puts forward the hypothesis that genetic alphabets
are based on systems of resonances, or, more precisely, on systems
of eigenvalues and eigenvectors of tensor families of [2M*2"]-
matrices. From the standpoint of this hypothesis, we represent one
of variants of a relevant representation of genetic alphabets, which
testifies in favor of this hypothesis.

The molecules of heredity (DNA) contain sequences of four
nitrogenous bases in the role of four “letters” of the basic genetic
alphabet of DNA: adenine A, cytosine C, guanine G, thymine T.
The genetic code encodes sequences of 20 amino acids in pro-
teins using 64 triplets representing all possible combinations of
these four types of the letters: CAG, GCT, ATC, .. .. The system of
genetic coding is based on sets (alphabets) of n-plets: the set of 4
monoplets (nitrogenous bases A, C, G, T); the set of 42=16 dou-
blets (AA, AG, .. .); the set of 43 =64 triplets. (The same numbers 4,
16, 64 are realized in Punnett squares and tables of inheritance of
eigenvalues).

Let us assume that four nitrogenous bases of DNA are eigenval-
ues of some matrices and so they can be located on diagonals of the
corresponding diagonal matrices. In this case the following known
facts are useful: (1) any square matrix with distinct eigenvalues \;
is transformed into its diagonal form (due to selection of the basis),
in which all its eigenvalues lie on its diagonal, and all other entries

are equal to zero; (2) the tensor product of diagonal matrices always
generates a diagonal matrix.

Science does not know why the basic alphabet of DNA consists
of the four polyatomic letters A, C, G, T of very simple struc-
ture. But it is known that the set of these four structures is not
quite heterogeneous, but it carries on itself the symmetric sys-
tem of binary-oppositional traits. The system of such traits divides
the genetic four-letter alphabet into various three pairs of let-
ters, which are equivalent from a viewpoint of one of these traits
or its absence (Fig. 4): (1) C=T & A=G (according to the binary-
opposite traits: “pyrimidine” or “non-pyrimidine”, that is purine);
(2) A=C & G=T (according to the traits: amino or keto); (3) C=G
& A=T (according to the traits: three or two hydrogen bonds are
materialized in these complementary pairs) (Gumbel et al., 2015;
Petoukhov, 2008; Stambuk, 1999).

To study phenomenological properties of the alphabet of 64
triplets, one can continue this natural scheme of division into sub-
alphabets on the base of the principle of paired letters. Imagine,
for example, the amino-pair A and C and the keto-pair G and T in
the role of diagonal members of two diagonal (2*2)-matrices, i.e.
in the role of their eigenvalues (Fig. 5). Tensor products of these
two diagonal matrices [C, A]q and [T, Glq4 in all possible combina-
tions in three represent the entire alphabet of 64 triplets in the
ordered form of diagonals of 8 diagonal (8*8)-matrices (the octet
of diagonals in Fig. 5 below; the index “d” after the brackets we use
for short notation of diagonal matrices). Here each triplet is one of
eigenvalues of one of eight (8*8)-matrices and corresponds to its
own eigenvector.

It is known that code values of triplets are dependent on the
order of letters in them. For example, triplets AAC, ACA and CAA,
which are identical in their letter composition and which belong
to the first of octets in Fig. 5, encode different amino acids. In our
approach, each of triplets has its own personality, because it plays
the role of one of eigenvalues of one of the above (8*8)-matrices
and it belongs to its individual eigenvector, which is one of 8 basic
vectors of an appropriate 8-dimensional space. It means that in this
model approach three triplets AAC, ACA, CAA are essentially differ-
ent each from other because each of them is connected with its
eigenvector, i.e. with its own form of oscillations inside an oscilla-
tory system with 8 degrees of freedom.

Each of traits of nitrogenous bases A, C, G, T in Fig. 4 can be inter-
preted as connected with its own resonance characteristics. For
example, it is obvious that purines may have resonance character-
istics that differ from the resonance characteristics of pyrimidines
due to differences in the structure of the purine and pyrimidine
molecules. In this light, each of mentioned pairs of binary-
oppositional traits can be treated as a pair of binary-oppositional
kinds of resonance characteristics. In this case, numeric symbols
0 and 1 in each of binary sub-alphabets in Fig. 4 are represen-
tations of binary-oppositional kinds of resonance characteristics.
This idea connects physical concepts of resonances of vibrosystems
with abstract binary-numeric systems of computer technology
and mathematics, including dyadic groups of binary numbers. For
comparison, we recall that in computer technology binary ele-
ments 0 and 1 are physically realized through using two types of
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0,A|=[C, Alg; |0,G|=[T,Gl4
[C,Al¢®[C,Al¢®[C,Alq¢=[CCC, CCA, CAC, CAA, ACC, ACA, AAC, AAA]q
[C,Al4®[C,Al¢®[T,G]a= [CCT, CCG, CAT, CAG, ACT, ACG, AAT, AAG]q
[C,Al4®[T,Gl¢®[C,A]lq= [CTC, CTA, CGC, CGA, ATC, ATA, AGC, AGA]q
[C,Al4®[T,Gl¢®[T,Gl¢=[CTT, CTG, CGT, CGG, ATT, ATG, AGT, AGGlq
[T,Gl«®[C,Al¢®[C,A]lq= [TCC, TCA, TAC, TAA, GCC, GCA, GAC, GAA]q
[T,Gl«®[C,Al¢®[T,Gls=[TCT, TCG, TAT, TAG, GCT, GCG, GAT, GAG]q
[T,Gl«®[T,Gl4®[C,Al¢=[TTC, TTA, TGC, TGA, GTC, GTA, GGC, GGAlq
[T,Gl«®[T,Gl¢®[T.Gls= [TTT, TTG, TGT, TGG, GTT, GTG, GGT, GGG]q

Fig. 5. Representations of nitrogenous bases and triplets in the form of eigenvalues of matrices. Above: the original diagonal (2*2)-matrices with pairs of letters C and A, T
and G. Bottom: the alphabet of 64 triplets in the form of 8 diagonals from 8 diagonal matrices with sizes (8*8).

signal amplitudes (e.g. oppositional in polarity) or two kinds of laser
beams etc., butin the considered genetic case, the binary opposition
of the resonance characteristics gives an opportunity to consider
genetic systems as binary computers on resonances.

4.1. Symmetric properties of the eight octets of triplets and their
code values

Until now, nothing has been said about amino acids and stop-
codons, which are encoded by triplets and which are not taken into
account in the formalistic construction of the eight octets of triplets
based on the tensor product of alphabetic (2*2)-matrices. Consider
now mosaics of placing amino acids and stop-codons inside these
octets of eigenvalues of the diagonal matrices.

Note that the huge quantity 64! ~ 1089 of variants exists for dis-
positions of 64 triplets in 8 octets, i.e. in 64 cells. For a comparison,
the modern physics estimates a duration of existence of the Uni-
verse in 107 s. Obviously, the random arrangement of 20 amino
acids and of corresponding triplets in 64 cells almost never gives
symmetry in such set of octets.

But unexpectedly the location of amino acids and triplets, having
different phenomenological properties, shows fine symmetries of
properties in this set of 8 octets in Fig. 5. These symmetries in the
molecular-genetic system testify the existence of hidden patterns.
One can demonstrate six examples of hidden symmetries and laws
related to the resonance approach.

4.1.1. The first example of hidden regularities inside the eight
octets

Substitution into the octets of triplets those amino acids and
stop-codons, which are encoded by triplets, detects a hidden sym-
metry in this octet organization: the entire set of 8 octets shows
itself as a complect of 4 pairs of adjacent octets with identical lists
of amino acids and stop-codons in each pair (Fig. 6).

4.1.2. The second example of hidden regularities inside the eight
octets

It is known that the alphabet of 64 triplets is divided by nature
into two equal sub-sets on the basis of strong and weak roots, i.e.,
the first two positions in triplets (Rumer, 1968): (a) 32 triplets with
strong roots, i.e., with 8 “strong” doublets AC, CC, CG, CT, GC, GG,
GT, TC on their first positions (such triplets are denoted by black
color on Figs. 7 and 8); (b) 32 triplets with weak roots, i.e., with 8
“weak” doublets AA, AG, AT, GA, TA, TT, TG.

Code meanings of triplets with strong roots do not depend on
the letters on their third position; code meanings of triplets with
weak roots depend on their third letter (Fig. 7).

The phenomenological location of 32 triplets with strong roots
(black color) and 32 triplets with weak roots (white color) has the

CCC | CCA | CAC | CAA | ACC | ACA | AAC | AAA
Pro Pro His Gln Thr Thr Asn Lys
CCT | CCG | CAT | CAG A ACT  ACG @ AAT @ AAG
Pro Pro His Gln Thr Thr Asn Lys
CTC | CTA A CGC | CGA ATC ATA AGC @ AGA
Leu Leu Arg Arg Ile Met Ser Stop
CIT CTIG CGT | CGG | ATT @ATG | AGT @ AGG
Leu Leu Arg Arg Ile Met Ser Stop
TCC TCA TAC | TAA | GCC GCA @ GAC @ GAA
Ser Ser Tyr Stop Ala Ala Asp Glu
TCT | TCG @ TAT | TAG AL GCT GCG | GAT GAG
Ser Ser Tyr Stop Ala Ala Asp Glu
TTC @« TTA @ TGC | TGA | GTC @ GTA & GGC A GGA
Phe Leu Cys Trp Val Val Gly Gly
TTT TTG @ TGT | TGG & GIT A GIG GGT GGG
Phe Leu Cys Trp Val Val Gly Gly

Fig. 6. Inside any of the four pairs of octets 1-2, 3-4, 5-6, 7-8, both octets are identical
in their lists of encoded amino acids and stop-codons (an appropriate amino acid or
stop-codon are shown under each triplet for the case of the Vertebrate Mitochondrial
Code, which is the most symmetric among known dialects of the genetic code).

THE STANDARD CODE

CCC, CCT, CCA, CCG = Pro

CAC, CAT, CAA, CAG = His, His, Gln, Gln

CTC, CTT, CTA, CTG > Leu

AAC, AAT, AAA, AAG Asn, Asn, Lys, Lys

CGC, CGT, CGA, CGG> Arg

ATC, ATT, ATA, ATG > Ile, lle, Ile, Met

ACC, ACT, ACA, ACG> Thr

AGC, AGT, AGA, AGG=> Ser, Ser, Arg, Arg

TCC, ICT, TCA, TCG = Ser

TAC, TAT, TAA, TAG = Tyr, Tyr, Stop, Stop

GCC, GCT, GCA, GCG> Ala

TTC, TTT, TTA, TTG =» Phe, Phe, Leu, Leu

GTC, GTT, GTA, GTG = Val

TGC, TGT, TGA, TGG = Cys, Cys, Stop, Trp

GGC, GGT, GGA, GGG>Gly

GAC, GAT, GAA, GAG= Asp, Asp, Glu, Glu

THE VERTEBRATE MITOCHONDRIAL CODE

CCC, CCT, CCA, CCG=> Pro

CAC, CAT, CAA, CAG = His, His, Gln, Gln

CTC, CTT, CTA, CCG Leu

AAC, AAT, AAA, AAG Asn, Asn, Lys, Lys

CGC, CGT, CGA, CGGPArg

ATC, ATT, ATA, ATG = Ile, Ile, Met, Met

ACC, ACT, ACA, ACGThr

AGC, AGT, AGA, AGG=> Ser, Ser, Stop, Stop

TCC, ICT, TCA, TCG=> Ser

TAC, TAT, TAA. TAG 2 Tyr, Tyr, Stop, Stop

GCC, GCT, GCA, GCG> Ala

TTC, TTT, TTA, TTG <> Phe, Phe, Leu, Leu

GTC, GTT, GTA, GTG=> Val

TGC, TGT, TGA, TGG = Cys, Cys, Trp, Trp

GGC, GGT, GGA, GGG Gly

GAC, GAT, GAA, GAG= Asp, Asp, Glu, Glu

Fig. 7. The partition of the alphabet of 64 triplets into sub-alphabets of 32 triplets
with strong roots (the left column, black color) and of 32 triplets with weak roots
(the right column) in cases of the Standard Code and the Vertebrate Mitochondrial
Code. All initial data are taken from the NCBI's web-site http://www.ncbi.nlm.nih.
gov/Taxonomy/Utils/wprintgc.cgi.

symmetric character in these octets (Fig. 8, left): (1) the black-and-
white mosaic of each octet is mirror-antisymmetric in its left and
right halves and it has a meander-like character; (2) the whole set
of 8 octets is divided into a pair of adjacent octets with identity
mosaics; (3) each octet contains 4 triplets with strong roots and 4
triplets with weak roots.
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[CCC, CCA, CAC, CAA,
[CCT, CCG, CAT, CAG,
[CTC, CTA, CGC, CGA,
[CTT, CTG, CGT, CGG,
[TCC, TCA, TAC, TAA,
[TCT, TCG, TAT, TAG,
[TTC, TTA, TGC, TGA,
[TTT, TTG, TGT, TGG,

ACC, ACA, AAC, AAAl4
ACT, ACG, AAT, AAGla
ATC, ATA, AGC, AGAlq
ATT, ATG, AGT, AGGJq4
GCC, GCA, GAC, GAAJq
GCT, GCG, GAT, GAGJq
GTC, GTA, GGC, GGAJq
GTT, GTG, GGT, GGGla

[#1,+1, -1,-1,#1,+1, -1,-1]q
[+1,+1, -1,-1,+1+1, -1,-1]4
[+1,+1,+1,+1,-1, -1, -1,-1]q
[+1,+1,+1,#1,-1, -1, -1,-1]q
[+1,+1, -1,-1,+1,+1, -1,-1]4
[#1,#1, -1,-1,+1,+1, -1,-1]4
[-1,-1,-1,-1, #1,+1,+1,+1]4
[-1,-1,-1,-1, #LF1,+1,+1]q

Fig. 8. The symmetric location of triplets with strong and weak roots in the 8 octets of triplets. Meander character of sequences of black and white triplets in each octet is
shown. Right: the representation of each octet in the form of a Rademacher function consisting of elements of “+1” and “—1".

3-2-1

[E—
1
b

g Qo

€Cc | €A | cac | caa ACA | Aac | Aaa TCC [ ACC | CAC | AAC | CCA | ACA | CAA | AAA 1-22)
|_CCT | CCG | CAT | CAG | ACT | ACG | AAT | AAG [(TCC | GEC | TAC | GAC | TCA | GCA | TAA | GAA +
CrC | €TA | €6C | CGA | ATC | ATA | AGC [ AGA CTC | ATC | CGC | AGC | CTA | ATA | CGA | AGA
CIT | CTG | CGT | CGG | ATT | ATG | AGT | AGG TTC | GIC | TGC | GGC | TTA | GTA | TGA | GGC
Tcc | Tea | TAc | TAA | Gec | GCA | Gac [ Gaa CCT | ACT | CAT | AAT ACG | CAT | AAG
TCT | TCG | TAT | TAG | GET | GCG | GAT | GAG TCT | GCT | TAT | GAT | TCG | GCG | TAG | GAG
TTC | TTA | TGC | TGA | GTC | GTA | GGC | GGA CTT | ATT [ CGT | AGT | €TG | ATG | €GG | AGG
TIT | TIG | TGT | TGG | GIT | GIG | GGT | GGG TIT | GTT | TGT | GGT | TTG | GTG | TGG | GGG
CCC | CAC | ACC | AAC | CCA | CAA | ACA | AAA CCC | CCA | ACC | ACA | CAC | CAA | AAC | AAA
CTC | CGC | ATC | AGC | CTA | CGA | ATA | AGA CCT | CCG | ACT | ACG | CAT | CAT | AAT | AAG
TCC | TAC | GCC | GAC | TCA | TAA | GCA | GAA TCC | TCA | GCC | GCA | TAC | TAA | GAC | GAA
TIC | TGC | GIC | GGC | TTA | TGA | GTA | GGC TCT | TCG | GCT | GOG | TAT | TAG | GAT | GAG
CCT | CAT | ACT | AAT | CCG | CAG | ACG | AAG CTC | CTA | ATC | ATA | CGC | CGA | AGC | AGA 3-1-2 231
CIT | CGT | ATT | AGT | CTG | CGG | ATG | AGG CIT | CIG | ATT | ATG | CGT | €GG | AGT | AGG
TCT | TAT | GET | GAT | TCG | TAG | GGG | GAG TIC | TTA | GIC | GTA | TGC | TGA | GGC | GGC
TTT | TGT | GIT | GGT | T1G GTG | GGG TTT | TTG | GIT | GIG | TGT | TGG | GGT | GGG
TCC | ACC | CCA | ACA | CAC | AAC | CAA | AAA TCC | CAC | CCA | CAA | ACC| AAC | ACA | AAZ 3-2-1
TCC | GCC | TCA | GCA | TAC | GAC | TAA | GAA €TC | €GC | CTA | CGA | ATC | AGC | ATA | AGA | -
[ [CCT | ACT | CCG | ACG | CAT | AAT | CAG | AAG CCT | CAT | €CG | CAG | ACT | AAT | ACG | AA
TCT | GCT | TCG | GCG | TAT | GAT | TAG | GAG CTT | CGT | CTG | CGG | ATT | AGT | ATG | AGC
CTC | ATC | CTA | ATA | €GC | AGC | CGA | AGA [CC | TAC | TCA | TAA | GCC | GAC | GCA | GAA
TTC | GIC | TTA | GTA | TGC | GGC | TGA | GGC [TC | TGC | TTA | TGA | GIC GTA | GGA
CIT | ATT | CTG | ATG | €GT | AGT AGG | TCT | TAT | TCG | TAG | GCT | GAT | GCG | GAG
TTT | GIT | TTG | GIG | TGT | GGT | TGG | GGG | [TT | TGT | TTG | TGG | GIT | GGT | GIG | GGG

Fig. 9. Changes of 8 octets of triplets with strong roots (black color) and weak roots (white color) from Fig. 8 in the case of all possible variants of simultaneous permutations
of positions in all triplets. Right: the general scheme of relations of the 6 sets of 8 octets of triplets. Each of two triangles in the six-pointed star corresponds to its own cases
of circular permutations: 1-2-3—2-3-1—3-1-2 (direct reading of triplets) and 3-2-1—2-1-3—1-3-2 (inverse reading).

But such odd meander functions are well known in sig-
nal processing theory and probability theory under the name
“Rademacher functions”: r,(x)=sign(sin2"mx). Rademacher func-
tions, containing only the elements “+1” and “—1”, are phenomeno-
logically associated with the genetic alphabet: each of the 8 octets of
triplets is one of Rademacher functions if every black (white) triplet
is interpreted as an element “+1” (“—1"). These phenomenological
symmetries speak additionally about structural connections of the
alphabet of 64 triplets with formalisms of mathematics of digital
signal processing.

4.1.3. The third example of hidden regularities inside the eight
octets

Works of many authors are devoted to relations between genetic
coding and circular codes, which concern questions of reading
frame (Arqués and Michel, 1996; Michel, 2007, 2013; Michel and
Seligmann, 2014; Seligmann, 2011, 2015; Stambuk, 1999). In this
section, cyclic permutations of positions in triplets are taken into
account. The set of 8 octets from Fig. 8 have an interesting property
in relation to simultaneous permutations of positions in all triplets
(Fig. 9).

Let us consider all possible variants of such cyclic permuta-
tions, where 3 variants exist for a direct reading of each triplet
(1-2-3—2-3-1-3-1-2) and 3 variants for an inverse reading (3-
2-1-2-1-3—1-3-2). Fig. 9 shows that each of these 6 variants
changes all octets and their black-and-white mosaics described
above on Fig. 8. In the result of the permutations, 5 new sets
of octets of triplets appear, where unexpectedly each of new 40
octets (5*8 =40) has again a meander character of its mosaic, which
is characterized by one of Rademacher functions. These results

[CCC, CCA, CAC, CAA, ACC, ACA, AAC, AAA]4
[CCT, CCG, CAT, CAG, ACT, ACG, AAT, AAG]qa
[CTC, CTA, CGC, CGA, ATC, ATA, AGC, AGA]q
[CTT, CTG, CGT, CGG, ATT, ATG, AGT, AGG]4
[TCC, TCA, TAC, TAA, GCC, GCA, GAC, GAA]4
[TCT, TCG, TAT, TAG, GCT, GCG, GAT, GAG]da
[TTC, TTA, TGC, TGA, GTC, GTA, GGC, GGA]a
[TTT, TTG, TGT, TGG, GTT, GTG, GGT, GGG]a

[+1, +1,+1, +1, +1, +1, +1, +1]4
[-1,+1,-1,+1, -1,+1, -1,+1]a
[-1,-1,+1,+1, -1, -1, +1, +1]q
[+1,-1, -1,+1,+1, -1, -1, +1]a
[-1,-1, -1, -1,+1, +1, +1, +1]q
[+1,-1, +1,-1, -1, +1, -1, +1]a
[+1,+1, -1,-1, -1, -1, +1, +1]q
[-1,+1,+1,-1,+1, -1, -1, +1]a

Fig. 10. The numeric representation of the 8 octets of triplets coincides with a com-
plete orthogonal system of Walsh functions for the 8-dimensional case, if the unique
status of thymine T is taken into account within digitizing of triplets. Black color
corresponds to triplets represented by “+1”.

testify that the Nature divided the set of 64 triplets into the subsets
of 32 triplets with strong roots and of 32 triples with weak roots by
the very special way in a connection with cyclic permutations.

4.1.4. The fourth example of hidden regularities inside the eight
octets

Among the four DNA bases - A, C, G, T - the letter T contrasts
phenomenologically with three other letters of the alphabet: (1)
only the letter T is transformed into another letter U (uracil) in the
transition from DNA to RNA; (2) only the letter T (and its substitute
U) does not have the functionally important amino group NH, in
contrast of other three letters (see Fig. 4, left).

This binary opposition can be expressed in a digital form as:
A=C=G=+1 and T=-1. Then each triplet under replacing its let-
ters on these numbers (A=C=G=+1,T=-1) can be represented as
the product of these numbers. For example, the triplet CAT is repre-
sented as 1*1*(—1)=—1 and the triplet TGT —as (-1)*1 *(-1)=+1.In
the result, the 8 octets of triplets obtain numerical representations
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Fig. 11. Cyclic changes. Left: iterative cyclic shifts of the first letters of all 8 octets (from Fig. 10) into last positions of the same octets give 24 sets of 8 octets, whose mosaics
correspond to 24 complete sets of Walsh functions for 8-dimensional space (black color means +1, white color means —1). Right: metamorphosis of butterflies.

as sequences of elements +1 and —1 (these elements are corre-
spondingly marked by black and white colors on Fig. 10). The set of
these sequences coincide with the complete system of orthogonal
Walsh functions for an 8-dimensional space (Fig. 10, right).

These Walsh functions, containing only the elements of “+1”
and “—1”, are widely used in digital signal processing and noise-
immunity coding. Completeness of the system of 8 Walsh functions
means that any 8-dimensional vector can be represented as their
superposition (i.e., decomposed on their base). On the basis of
complete systems of Walsh functions, noise-immunity coding of
information is used on the spacecrafts “Mariner” and “Voyager” for
transmission to Earth photos of Mars, Jupiter, Saturn, Uranus and
Neptune. Complete systems of Walsh functions form Hadamard
matrices, which are used in quantum computers (“Hadamard
gates”); Hadamard matrices are used in quantum mechanics in
the form of unitary operators, etc. (Ahmed and Rao, 1975; Seberry
et al., 2005). Walsh functions play basic role in the sequency anal-
ysis (Harmuth, 1970, 1977, 1981), which is one of important types
of spectral analysis in communication technologies on discrete
signals and which has found extensive application in electron-
ics, acoustics, optics, and so forth. The sequency analysis spawned
entirely new communication system, instant imaging device, a
high-speed underwater acoustic cinema, receivers and transmit-
ters of non-sinusoidal electromagnetic waves. In particular, on the
base of sequency analysis the problem of absorption of radio waves
and acoustic waves that important for bioinformatics is bypassed
(Soroko, 1979). In our approach, these systems of Walsh functions
are representatives of the genetic alphabet: each of the 8 functions
of the complete Walsh system is the diagonal of one of the genetic
(8*8)-matrices of the diagonal type, i.e., a spectrum of eigenvalues
of an oscillation system with 8 degrees of freedom.

In addition, we note the following. Matrices [C, A]q and [T, Glq,
tensor products of which gave 8 octets of triplets in Fig. 5, were
associated with the binary sub-alphabet on the trait “amino-keto”
(Fig. 4). If we turn to the other two sub-alphabets in Fig. 4, it is pos-
sible to similarly consider the other two pairs of diagonal matrices:
[C, Glq and [T, Alg; [C, Tlq and [G, Alq. Each of these pairs gives
rise to other 8 octets of triplets by means of tensor products of its
matrices in all possible combinations in threes (analogous to the
table in Fig. 5 below). Each of these two new sets of 8 octets of
triplets also has its numerical representation in the form of new
(individual) sets of Rademacher and Walsh functions for the same
binary-oppositional traits of triplets: (1) strong and weak roots of
triplets; (2) the special status of the letter T.

These results support the following:

e Alphabets of the genetic code are alphabets of eigenvalues
and eigenvectors of matrices of oscillatory systems (figuratively

speaking, the genetic code is the code of systems of resonances);
accordingly, one can think, that genetic texts are written in the
language of the resonances.

From this standpoint it follows that a living body is a choir of
coordinated oscillatory processes.

4.1.5. The fifth example of hidden regularities inside the eight
octets

The 8 octets with their black-and-white mosaics on Fig. 10 have
additional cyclic properties. Each octet contains 24 nitrogenous
bases (or letters). One can cyclically shift the first letters of octets
into the last position in their octets. In this case a new set of 8 octets
appears with new mosaics. Repeating this cyclic shift of the first
letters of all octets into the last positions of their octets again and
again, we receive 192 octets inside 24 sets of 8 octets with individ-
ual mosaics (Fig. 11). One can check that the mosaic of each of 192
octets corresponds again to one of Walsh functions. Moreover each
of 24 sets of octets corresponds again to a complete set of Walsh
functions for 8-dimensional space of signals and to an appropri-
ate Hadamard (8*8)-matrix. It confirms that the Nature has built
genetic alphabets in connection with cyclic shifts.

Such cyclic metamorphoses in the family of 24 complete sets of
Walsh functions (Fig. 11, left), which are related with phenomen-
ological features of the alphabet of triplets, lead to an association
with the famous doctrine of Ancient Chinese medicine. The last
connects chrono-cyclic processes in biological organisms with
chrono-cycles of the surrounding world, first of all, with the
solar cycles of the changing of days and nights. The duration
of such solar cycles is divided traditionally into 24 equal parts
(24 h) in accordance with a cyclic activity of inherited physiolog-
ical organs (Petoukhov, 2001). This scheme is used intensively in
recipes of acupuncture, in methods of pulse-diagnostics, etc. Mod-
ern medicine supports this Ancient doctrine (Wright, 2002).

Many significant examples of cyclic genetic organizations of bio-
logical bodies are given by metamorphoses of animals. For instance,
butterflies have four stages of cyclic metamorphoses in their life:
egg — larva (the caterpillar stage) — pupa (the chrysalis phase)
— adult butterfly — egg — ... (Fig. 11, right). All these 4 differ-
ent organisms possess the identical DNA-molecules, but - in the
cyclic transition from one organism to another - algorithms of the
implementation of DNA-information are cyclically changed, that is
accompanied by the expression of other sets of genes in a temporal
chain of developmental stages. One can additionally note that in the
chrysalis phase the organism does not eat at all; consequently its
atomic content is not changed practically, but its atomic-molecular
configurations are reformed cardinally by means of complex per-
mutations of chemical elements to generate finally a butterfly. Such
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cyclic phenomena make up a large puzzle, for the solution of which
one should research cyclic properties of molecular-genetic struc-
tures.

4.1.6. The sixth example of symmetries inside the eight octets

The nitrogenous bases have different molecular parameters:
adenine A (CsHsN5) has molar mass 135 g, its quantity of protons is
equal to 70; cytosine C (C4H5N30) has molar mass 111 g, its quan-
tity of protons is equal to 58; guanine G (CsHsN50) has molar mass
151 g, its quantity of protons is equal to 78; thymine T (CsHgN,03)
has molar mass 126 g, its quantity of protons is equal to 66 (amounts
of protons in complementary pairs C—G and A—T are both equal to
136).

The set of 8 octets of triplets on Fig. 5 has a few numerical sym-
metries in their molecular parameters including the followings:

e In all the 4 pairs of octets 1-8, 2-7, 3-6 and 4-5, which are located
symmetrically in relation to the middle horizontal line on Fig. 5,
amounts of molar masses of their 24 triplets are equal to 6276 g;

¢ [nall the 4 pairs of octets 1-8, 2-7, 3-6 and 4-5, amounts of protons
of their 24 triplets are equal to 3264,

e Each of octets comprises 12 representatives of each complemen-
tary pairs C—G and A—T; correspondingly its amount of their
hydrogen bonds is equal to 60 (=12*3 +12%2);

e Each octet contains of 12 purines A, G and 12 pyrimidines C, T.

These results can be also related to the question about arithmetic
inside the genetic code (Shcherbak, 2003).

5. Vibrational mechanics and biological phenomena

Mechanical and electrical oscillations in living bodies are closely
connected because many tissues are piezo-electrical (nucleic acids,
bone, actin, dentin, tendons, etc.). Mathematics of mechanical and
electrical oscillations is analogical (so called “electro-mechanical
analogies” are well-known). Vibrational mechanics is widely used
in engineering and is full of amazing phenomena of vibrational sep-
aration and structuring of multiphase media, vibro-transportation
of substances, vibro-transfer of energy and so forth (Blekhman,
2000; Ganiev et al., 2015). The concept of resonance genetics draws
attention to a possible value of phenomena of vibrational mechan-
ics in physiology with its complex phenomena of coordinated
actions of many parts, for example, within division of cells, etc.
Practically invisible vibrations can provide, for example, the fol-
lowing phenomena: the upper position of the inverted pendulum
becomes stable; heavy metal ball “floats” in a layer of sand; a rope
takes a form of a vertical stem if a corresponding vibration acts
on its base. Inside fluids, vibrating bodies can attract or repel each
other (vibrating forces of Bjerknes) and pulsating gas bubbles may
coalesce or divide.

Mutual synchronization of many physiological processes is
important for a living body, including phenomena of its symmet-
ric organization (Petoukhov, 1981, 1989). Vibrational mechanics
gives the known example of resonant self-synchronization of
plurality of oscillating pendulums mounted on a common mov-
able platform (Harvard demonstration - http://www.youtube.com/
watch?v=Aaxw4zbULMs). Inside a living organism, its structural
water apparently plays the role of such common mobile platform,
which is required for synchronization. Illustrative example of mor-
phogenetic and general physiological role of structural water is
given by jellyfish, which consists of 99% water, but despite of this
its morphology implements heritable phyllotaxis phenomena: ten-
tacles, canals and zooids of some jellyfish exactly correspond to
phyllotaxis laws (Jean, 1994, Chapter 12.3.3). This structural water
is also a candidate for the role of a unifying vibro-platform for

vibro-transfer of energy among different parts of a living body.
The physical features of structural water, associated with reso-
nance interactions in it, are currently being studied in laboratories
around the world. An important role in vibro-connections among
parts of an organism belongs also to cytoskeleton that works in
coordination with boundary water and membranes (Igamberdiev,
2012).

The phenomenon of vibro-transfer of energy among parts of an
oscillatory system is known: a rotary electromotor operates stably,
when it is disconnected from the power electrosupply, if it is stand-
ing on a mutual vibro-platform with another rotary electromotor
of similar resonant characteristics, which is connected to a power
supply (self-synchronization by resonant interactions). Taking into
account possibilities of such energy transferring, living organisms
can be seen as resonance consumers of energy of surrounding elec-
tromagnetic waves coming from space and the depths of the earth.
Photosynthesis, which is based on absorbing solar energy of light
waves, is probably only one of examples of the biological consump-
tion of energy from external wave sources on the basis of resonant
mechanisms (a resonant “vampirism” of energy and information
in organisms). A lot of data from homeopathy and physiological
phenomena of ultraweak influences testifies in favor of resonant
organization of living matter.

Vibrational mechanics also allows simulating the evolutionary
coordination and selection in the problem of a creation of a sin-
gle organism from many pieces. Let us return to the example of
rotary motors on a total mobile platform. Around a single electric
motor connected to the power supply one can set — on the total
mobile platform - many other rotary motors without the electri-
cal power supply, which have different resonance characteristics.
Through the self-synchronization by resonant interactions, only
those motors, which are capable to resonance coordination with
the base motor, will work as parts of a single functional colony, and
the remaining motors will not work and will be correspondingly
eliminated from such total working ensemble. Resonant combin-
ing parts into a single whole is based on the fundamental physical
principle of minimum of energy: each of members of the ensemble
requires less energy for performing own work than when work-
ing individually. The principle of energetic minimum in resonance
processes has some correlations with the principle of relaxation
in morphogenetic processes proposed in (Igamberdiev, 2012). The
concept of resonance genetics has also some interrelations with the
idea of Bauer (1935) that living systems work in expense of non-
equilibrium, and the external energy is used not directly to perform
work but to support the stable non-equilibrium state; most of this
energy is transformed into the kinetic energy.

The morphological variability follows certain rules that can be
called nomothetical laws and analyzed as symmetrical transforma-
tions (Meyen, 1973). The nomothetical laws and morphogenetic
phenomena are related with the known idea about existence of
a morphogenetic field, a possible nature and bases of which are
discussed by many authors (Beloussov, 1998, 2012; Igamberdiev,
2014; Meyen, 1973). The book of D’Arcy Thompson (1917) remains
the most comprehensive compendium of nomothetical laws oper-
ating in the course of biological transformations.

Our concept of resonance genetics proposes a new approach
to simulate inherited biological surfaces, which typically have
curvilinear forms. Curvilinear 2-dimensional surfaces inside 3-
dimensional Euclidean spaces are described in Riemann geometry
by means of fields of metric tensors, which are represented by
symmetrical nonsingular (2*2)-matrices [g11, €12; €21, 22], where
g12=8-1 (Gallot et al., 2004; Rashevsky, 1964). But symmetrical
(2*2)-matrices represent also vibro-systems with two degrees of
freedom. It means that resonance characteristics of such vibro-
systems can be used to define (or encode) corresponding metric
tensors. This coincidence of symmetrical (2*2)-matrices from
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Fig. 12. Natural logarithm as a square under hyperbola y = 1/x. Left: In(a) is equal to the square under the hyperbola from 1 to a. Right: In(x/xo) is equal to the square under

the hyperbola from xg to x.

Riemann geometry and from theory of oscillations has led the
author to the idea about so called “morphoresonance” field as a new
version of morphogenetic field (Petoukhov, 2015b,c). By definition,
the morphoresonance field, which exists inside a living organism
and which develops in time, is a tensor field of oscillation pro-
cesses with coordinated resonance frequencies of many oscillatory
systems with many degrees of freedom. In this notion we do not
suppose existence of physical fields or forces unknown to science.
This version of the morphogenetic field for the first time links the
morphogenetic field with the features of molecular genetic sys-
tems (on basis of resonance spectra). The idea about fields of metric
tensors, which are defined (or are encoded) by means of fields of
corresponding resonance spectra, can be used in particular to sim-
ulate Euclidean and Non-Euclidean bio-symmetries (Igamberdiev,
2012; Petoukhov, 1989, 2015b,c). We suppose that morphogenesis
is a system-resonance phenomenon. Basic principles of the theory
of the morphoresonance field are connected with conformal bio-
symmetries (Petoukhov, 1989) and their generalization up contact
bio-symmetries on the base of the group of contact transformations
known in optics and mechanics in the following topics: the optical-
mechanical analogy; Huygens’ principle; canonical equations of
Hamilton, etc. On this way the question about characteristical (gen-
erating) functions of morphogenetic medium is studied. One can
add that tensor fields are widely used in physics. For instance, Albert
Einstein identified the gravitational field with the field of metric
tensors of Riemann geometry. Tensor fields of Riemann geometry
are used to describe physical quantities characterizing the elastic,
optical, thermodynamic, dielectric, piezomagnetic and other prop-
erties of anisotropic bodies.

An organism during its life on genetic basis should solve
algorithmic problems of two types: (1) informational, providing
coordinated energy processes; (2) energetic, providing information
processes. Systems of resonances can be used as a common basis of
such “two-faced” algorithms since resonances are associated both
with oscillatory energy and with informatics of communications
among objects.

It is profitable for an organism, which is a single whole, to have
the same typical algorithms at different levels of its functioning for
a mutual optimal coordination of its parts. By this reason we study
possibilities to simulate different innate phenomena on the general
basis of formalisms of the theory of resonances of vibro-systems
with many degrees of freedom. Here we can mention, for example,
the basic psychophysical Weber-Fechner law, to which different
types of inherited sensory perception are subordinated: sight, hear-
ing, smell, touch, taste, etc. The Weber-Fechner law declares the
following: the intensity of the perception is proportional to the
logarithm of stimulus intensity; it is expressed by the equation

p = kx*In(x/xp) = k = {In(x) — In(xo)}, (1)

where p - the intensity of perception, x — stimulus intensity, xg
- threshold stimulus, In - natural logarithm, k - a weight factor.
Because of this law, the power of sound in technology is measured
on a logarithmic scale in decibels.

This logarithmic law (1) is simply modeled on the base of natu-
ral resonance frequencies of a particular class of oscillatory systems
with 2 degrees of freedom. As known (Klein, 2004), the natural
logarithm can be defined for any positive real number “a” as the
area under the hyperbola y =1/x from 1 to a (Fig. 12, left). It means
that two points of the hyperbola with their coordinates (x, 1/x) and
(xo, 1/xg), where x>1, xo>1, define values of natural logarithms
In(x) and In(xy). Subtraction In(x) — In(xg) gives the intensity of per-
ception p in the expression (1) of the Weber-Fechner law (Fig. 12,
right). But the same points (x, 1/x) and (xg, 1/x¢) are defined by diag-
onal matrices [x, 0; 0, 1/x] and [xg, 0; 0, 1/xg] of two vibro-systems
with eigenvalues, which are related reciprocally (correspondingly,
natural resonance frequencies in every of the vibro-systems are
also reciprocal to each other).

Here one can also recall the known phenomenon of confor-
mational fluctuations of enzyme macromolecules on frequencies
of sound waves and other frequencies. In connection with this
phenomenon, the possible importance for life “fantastic pic-
tures of musical interactions of biochemical systems, cells, organs”
related to “biochemical aesthetics” has been noted in (Shnoll, 1979,
p.75).

Our research is associated with “biochemical aesthetics”. An
organism can be seen as a musical synthesizer with multiple sett-
ings of inherited resonant modes (Darvas et al., 2012; Petoukhov,
2015a,b). Music is a game with acoustic resonances, to which peo-
ple are remarkably predisposed. Throughout tens of thousands of
years, people create musical instruments, adjusting them to spe-
cific systems of resonances. Over the centuries, people have learned
to combine individual instruments and singers into orchestras and
choirs as coordinated oscillating systems with an increased num-
ber of degrees of freedom. Gottfried Leibniz declared that music
is arithmetic of soul, which computes without being aware of
it. Taking into account that music is represented by systems of
resonances, one can reformulate this declaration: systems of reso-
nances are the arithmetic of soul, which computes without being
aware of it.

6. Some concluding remarks

Max Planck wrote: «We thus find that it is a characteristic of
every new idea occurring in science that it combines in a cer-
tain original manner two distinct series of facts» (Planck, 1936).
The general idea that knowledge is a search for analogies is
recognized in science at least since the time of B. Bolzano. Accord-
ingly, the concept of system-resonance genetics is appeared in the
result of the author’s discovery of structural analogies between
genetic phenomena and the mathematical theory of resonances of
vibro-systems with many degrees of freedom. Due to this, promis-
ing intersections of biology with physics and informatics were
revealed.

All natural objects possess resonance properties. From the
standpoint of our model approach, genetic physiology is
associated with a relatively narrow class of systems of reso-
nances, which are related with eigenvalues and eigenvectors of
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(2™*2M)-matrices from tensor families based on tensor products of
(2*2)-matrices. Our results argue in favor of specificity of the biolog-
ical system of inherited varieties of resonances expanding during
ontogeny.

Genetic molecules belong to the microworld and therefore are
subordinated to the principles of quantum mechanics. Quantum
mechanics operates with frequency and resonance characteristics
of quantum-mechanical objects; its mathematics uses eigenval-
ues of matrices. In general, quantum mechanics was emerged and
developed largely as a science about resonances in microworld.
Thus, the concept of system-resonance genetics (or spectral-
resonance genetics) creates models of genetic phenomena on the
same language of frequencies and resonances, on which models in
quantum mechanics are based. In addition to this, it uses the same
matrix language, on which “matrix mechanics” of Werner Heisen-
berg has been created; it is historically the first form of quantum
mechanics, which retains its value to this day. In quantum physics,
Hermitian matrices (or self-adjoint matrices) with complex entries
play an important role. In our matrix approach to genetic systems,
Hermitian matrices are attracted a special attention because of the
following: (1) they have real eigenvalues; (2) the tensor product
of two Hermitian matrices gives a new Hermitian matrix; (3) in
quantum physics, in considering the quantum system consisting of
two subsystems, its state space is constructed in the form of the
tensor product of state spaces of the subsystems. Taking these into
account, all data mentioned above in our article about tensor fam-
ilies of matrices with real eigenvalues can be also interpreted from
the standpoint of tensor families of Hermitian matrices. The study
of such interpretation and its consequences can lead to interesting
results and to new questions. For example, the question is possible:
what of kinds of Hermitian operators stands behind genetic diago-
nal matrices such as [C, 0; 0, A]and [T, 0; 0, G] (Fig. 5), which can be
represented in numerical forms, including forms of numeric block
matrices? Is it a new kind of Hermitian operators, which plays a
role in genetics, or not?

The concept of resonance genetics can facilitate a convergence of
biology and quantum mechanics, possibility of which is studied by
many authors (see e.g.Igamberdiev, 2014). The creator of the theory
of resonance in structural chemistry L. Pauling was right when he
supposed an important meaning of resonances in organization of
living matter (Pauling, 1940).

In the past century, science has discovered that molecular-
genetic bases of all living organisms are the same (alphabets of
DNA, RNA, etc.) and that they are very simple. A hope arises that
the algorithmic foundations of organisms, which are subordinated
to genetic laws such as Mendel’s laws, are also very simple and are
unified for all living things. Identifying these algorithms of living
matter is important. We assume that the algorithms of resonant
matching and ordering subsystems play one of key roles in living
matter.

The author believes that the development of modern theoret-
ical biology - as a branch of mathematical natural science - can
go on the same way as the development of modern theoretical
physics, which, according to P. Dirac, should be by the following
recipe. “Start with a beautiful mathematical theory. “If it is really
beautiful - he believed - it is sure to be an excellent model of impor-
tant physical phenomena. So you need to search for these phenomena
to develop applications of beautiful mathematical theory and inter-
pret them as predictions of new laws of physics” - in such way,
according to Dirac, the whole new physics is built — relativistic and
quantum” (quote from Arnold (2006)). This article shows that beau-
tiful mathematical theory of eigenvalues and eigenvectors of tensor
families of matrices gives models of important genetic phenomena
and structures with revealing their deep connection with the the-
ory of resonances of oscillatory systems with many degrees of
freedom.
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