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Abstract. This paper is devoted to the presentation and analysis of matrix 
representations of the genetic code. Principal attention is paid to a family of the genetic 
matrices which are constructed on the basis of Gray code ordering of their rows and 
columns. This Gray code ordering reveals new connections of the genetic code to: 8-
dimensional bipolar algebras; Hadamard matrices; golden matrices; Pythagorean 
musical scale, and an integer triangle attributed to Nicomachus, a Syrian 
mathematician from second century A.D. All of these mathematical entities possess 
symmetrical features.  Some questions about silver means and Pythagorean triples are 
also described by these genetic matrices and their generalizations. 
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1. INTRODUCTION.  

The achievements of bioinformatics have led to new thoughts on the essence of 
life. "Life is a partnership between genes and mathematics" (Stewart, 1999). But what 
kind of mathematics relates to the genetic code and what kind of mathematics lies 
behind genetic phenomenology which accounts for the great noise-immunity of the 
genetic code? This question is one of the main challenges in the mathematical natural 
sciences today.  

The genetic code serves to provide information transfer with a high-level of 
noise-immunity along a chain of generations. In view of this we will look for genetic 
mathematics in the formalisms of the theory of discrete signal processing, noise-
immunity codes, and computer informatics. This report carries forth the authors’ 
investigations [Kappraff, 2000a-c; Petoukhov, 2001, 2005, 2008].  

Genetic coding possesses noise-immunity. Mathematical theories of noise-
immunity coding and discrete signal processing are based on matrix methods for the 
representation and analysis of information. These matrix methods, endowed with 
symmetry, are applied to the analysis of ensembles of molecular elements of the genetic 
code. This report describes a matrix representation of the genetic code connected with 
Gray code which is widely used in the field of information coding. Gray code is a 
system of enumerating integers using 0’s and 1’s such that from one integer to the next, 
a single bit changes from 1 to 0 or 0 to 1 and that change occurs in the least significant 
digit to result in a value not previously obtained. This Gray code method of 
presentation, which differs significantly from the previous representation based on 
Kronecker families of matrices [Petoukhov, 2001, 2005], reveals new connections of the 
genetic code to the following mathematical entities: 8-dimensional bipolar algebras; 
Hadamard matrices; golden matrices; Pythagorean musical scale, and the Nicomachus 
triangle. This mathematics is rich in symmetry. These matrices will also be shown to 
describe all of the silver means and Pythagorean triples based on work by Kappraff and 
Adamson [Kappraff, 2009]. 
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2. A SPECIAL MATRIX PRESENTATION OF THE GENETIC CODE.  
 
We present the genetic alphabet encoding the DNA/RNA bases, A (adenine), C 
(cytosine), G (guanine) and U in the form of an alphabetic matrix S: 

 1 0 
1 C A
0 U G

The first column of this matrix contains pyrimidines, C and U, each of which is 
marked by the symbol 1 taking into account this mutual chemical aspect. The second 
column contains purines, A and G, each of which is marked by the symbol 0 taking into 
account this mutual chemical aspect. The first row of the matrix contains C and A, each 
of which is keto from the viewpoint of their physiochemical significance and is marked 
by the symbol 1. The second row of the matrix contains U and G, each of which is 
amino from the viewpoint of their physiochemical significance and is marked by the 
symbol 0. In this way each of these nitrogenous bases obtains a binary expression in 
accordance with its position inside the matrix S: C is expressed by 11; A is expressed by 
10; U is expresses by 01; G is expressed by 00. 

This paper considers these binary symbols from the perspective of Gray code. 
In Gray code the numbers 0, 1, 2, 3, 4, 5, 6, 7 are represented as follows: 0 - 000; 1 – 
001; 2 – 011; 3 – 010; 4 – 110; 5 – 111; 6 – 101; 7 – 100. One can construct a (4*4)-
matrix S2 for the 16 genetic duplets and a (8*8)-matrix S3 for the 64 genetic triplets, 
where all rows and columns are ennumerated in ascending order in Gray code (Figure 
1). Each element of these matrices is coded by the bits in its row and column, e.g., the 
duplet UC is represented by 0111 because U is symbolized by 01 and C is symbolized 
by 11).  
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Figure 1. The matrix S2 for 16 duplets (on the left side) and the matrix S3 for 64 triplets 
with the Gray code ordering of numeration of all rows and columns. A correspondence 
between triplets and amino acids is shown for the case of the vertebrate mitochondrial 
genetic code. Names of amino acids are given by their standard abbreviations. The 
black-and-white mosaic is explained in the text. 



Matrix S3 in Figure 1 shows, additionally, what kind of amino acids (or a stop-
signal) is encoded by each triplet of the vertebrate mitochondrial genetic code, which is 
the most symmetrical known dialect of genetic coding. It should be explained that 
modern science knows many dialects of the genetic code, as shown on the NCBI’s 
website http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi. By tradition, 
natural objects with the greatest symmetry are studied first after which cases in which 
symmetry is violated are studied. Similarly, the authors first investigate the vertebrate 
mitochondrial genetic code which is the most symmetrical. Its should be noted that 
some authors consider this dialect to be not only the most “perfect” and symmetrical but 
also the most ancient  although this opinion is subject to some debate. 

Let us explain a black-and-white mosaic of the matrix S3 in Figure 1. Figure 2 
shows the correspondence between the set of 64 triplets, sometimes referred to as 
codons, and the set of 20 amino acids with stop-signals (Stop) of protein synthesis in the 
vertebrate mitochondrial genetic code.  

8 subfamilies of the “two-
position” NN-triplets and the 
amino acids, which are encoded 
by them 

8 subfamilies of the “three-position” 
NN-triplets and the amino acids, 

which are encoded by them 

CCC, CCA, CCU, CCG Î Pro CAC, CAA, CAU, CAG Î His, Gln 

CUC, CUA, CUU, CCG Î Leu  AAC, AAA, AAU, AAG Î Asn, Lys 

CGC, CGA, CGU, CGG Î Arg  AUC, AUA, AUU, AUG Î Ile, Met 

ACC, ACA, ACU, ACG Î Thr AGC, AGA, AGU, AGG Î Ser, Stop 

UCC, UCA, UCU, UCG   Î Ser UAC, UAA, UAU, UAG  Î Tyr, Stop 

GCC, GCA, GCU, GCG   Î Ala UUC, UUA, UUU, UUG  Î  Phe, Leu 

GUC, GUA, GUU, GUG Î Val UGC, UGA, UGU, UGG  Î Cys, Trp 

GGC, GGA, GGU, GGG Î Gly GAC, GAA, GAU, GAG  Î Asp, Glu 

Figure 2. The case of the vertebrate mitochondrial genetic code. The initial data were 
taken from the NCBI’s web-site 
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi. 

The set of 64 triplets contains such 16 subfamilies of triplets, every one of which 
contains 4 triplets with the same pair of letters in the first two positions of each triplet 
(an example of such subsets is the case of the four triplets CAC, CAA, CAU, CAG with 
the same two letters CA on their first two positions). We shall refer to such subfamilies 
as NN-triplets. In the case of the vertebrate mitochondrial code, the set of these 16 
subfamilies of NN-triplets is divided into two equal subsets from the point of view of 
degeneration properties of the code (Figure 2). The first subset contains 8 subfamilies of 
so called “two-position” NN-triplets, a coding value of which is independent of a letter 
on their third position. An example of such subfamilies is the four triplets CGC, CGA, 
CGU, CGC, all of which encode the same amino acid Arg, although they have different 
letters on their third position. All members of such subfamilies of NN-triplets are 
marked by black color in the genomatrix on Figure 1.   

The second subset contains 8 subfamilies of “three-position” NN-triplets, a coding value 
which depends on a letter on their third position. An example of such subfamilies is the 
four triplets CAC, CAA, CAU, CAC, two of which (CAC, CAU) encode the amino acid 
His and other two (CAA, CAG) encode another amino acid Gln. All members of such 
subfamilies of NN-triplets are marked by white color in the genomatrix on Figure 1. So 
this genomatrix has 32 black triplets and 32 white triplets. Each subfamily of four NN-
triplets appears in an appropriate (2x2)-subquadrant of the genomatrix. The black 
triplets encode the so-called high-degeneracy amino acids composed of four or more 



triplets, and from Figure 2 it can be seen that there are eight such amino acids, whereas 
the white triplets encode low-degeneracy amino acids with only two triplets, and it can 
be seen from Figure 2 that there are twelve such amino acids [Petoukhov, 2005]. The 
black-and-white mosaic of the matrix S3 (Figure 1) has inversion symmetry relative to 
the matrix center. This mosaic reflects the specificity of degeneracy of the vertebrate 
mitochondrial genetic code.  

3. CONCERNING AN ALGORITHMIC CONNECTION OF THE GENETIC 
(8*8)-MATRIX WITH AN 8-DIMENSIONAL ALGEBRA.  

Is the mosaic genetic matrix S3 (Figure 1) connected with a matrix form of 
representation of a multi-dimensional algebra? Yes, a positive answer was received on 
the basis of a simple algorithm of digitization which uses the molecular characteristics 
of the nitrogenous bases A, C, G, U/T from the genetic alphabet. The genomatrix S3 
(Figure 1) is transformed into a new numeric 8-parametric matrix Y8 (Figure 3) by 
means of this alphabetic algorithm.  

 
  100(7) 101(6) 111(5) 110(4) 010(3) 011(2) 001(1) 000(0) 
 100 

(7) 
x1 x0 x2 x3 -x7 -x6 -x4 -x5 
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(6) 

x1 x0 x2 x3 -x7 -x6 -x4 -x5 
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(5) 

-x3 -x2 x0 x1 x5 x4 -x6 -x7 
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(4) 

-x3 -x2 x0 x1 x5 x4 -x6 -x7 

 010 
(3) 

-x7 -x6 x4 x5 x1 x0 -x2 -x3 

 011 
(2) 

-x7 -x6 x4 x5 x1 x0 -x2 -x3 

 001 
(1) 

-x5 -x4 -x6 -x7 x3 x2 x0 x1 

 000 
(0) 

-x5 -x4 -x6 -x7 x3 x2 x0 x1 

Figure 3. The matrix Y8, the black cells of which contain coordinates with the 
sign ”+” and the white cells of which contain coordinates with the sign ”-”. The 
numeration of the columns and the rows is identical to the numeration of the columns 
and the rows of the genomatrix S3

  of Figure 1. 
 
The cells of the matrix Y8, which are occupied by elements with the sign “+”, 

are marked by dark color. The cells of the matrix Y8, which are occupied by 
components with the sign “-”, are marked by white color. Such a black-and-white 
mosaic of the matrix Y8 is identical to the black-and-white mosaic of the genomatrix on 
Figure 1. The matrix Y8 has the 8 independent parameters x0, x1, x2, x3, x4, x5, x6, x7, 
which are interpreted as real numbers here. It has been discovered that the matrix Y8 is 
the matrix form of a special 8-dimensional algebra over the field of real numbers.  

Let us describe the alphabetic algorithm for the digitization of 64 triplets 
[Petoukhov, 2008a,b]. This algorithm is based on utilizing the two following binary-
oppositional attributes of the genetic letters A, C, G, U/T: “purine or pyrimidine” and “2 
or 3” hydrogen bonds. It uses also the well-known thesis of molecular genetics that 
different positions within triplets have different code meanings. For example the article 
[Konopelchenko, & Rumer, 1975] has described that the first two positions of each 
triplet form “the root of the codon” and that they differ drastically in their function from 
the third position and by its special role. In view of this “alphabetic” algorithm, the 
transformation of genomatrix S3

 into matrix Y8 is not an abstract and arbitrary action at 
all, but such a transformation can actually be utilized by a kind of bio-computer system 
within organisms.  

1) The alphabetic algorithm of the digitization defines the special scheme of 
reading each triplet: the first two positions of the triplet are read by genetic 
systems from the perspective of one molecular attribute and the third 
position of the triplet is read from the perspective of another molecular 



attribute. By this alphabetic algorithm, which allows one to recode the 
symbolic matrix S3 into the numeric matrix Y8 (Figure 3), each triplet is 
read in the following way: Two first positions of each triplet are marked 
by the symbol “Į” in place of the complementary letters C and G on these 
positions and by the symbol “ȕ” in place of the complementary letters A 
and U; 

2) The third position of each triplet is marked by the symbol “Ȗ” in place of 
the pyrimidines (C or U) at this position and by the symbol “į” in place of 
the purines (A or G);  

3) The triplets, which have the letters C or G in their first position, receive 
the sign “-“ in only those instances for which their second position is 
occupied by the letter A. The triplets, which have the letters A or U in their 
first position, receive the sign “+” in those cases only for which their 
second positions are occupied by the letter C. 

For example, the triplet CAG receives the symbol “-Įȕį”, because its first 
letter C is symbolized by “Į”, its second letter A is symbolized by “ȕ”, and its third 
letter G is symbolized by “į”. This triplet possesses the sign “-” because its first 
position has the letter C and its second position has the letter A. One can see that this 
algorithm recodes all triplets from the traditional alphabet ɋ, Ⱥ, U, G into the new 
alphabet Į, ȕ, Ȗ, į. As a result, each triplet receives one of the following 8 expressions: 
ĮĮȖ = x0, ĮĮį = x1, ĮȕȖ = x2, Įȕį = x3, ȕĮȖ = x4, ȕĮį = x5, ȕȕȖ = x6, ȕȕį = x7. We will 
suppose that the symbols “Į”, “ȕ”, “Ȗ”, “į” are real numbers. This algorithm transforms 
the initial symbolic matrix S3 (Figure 1) into the numeric matrix Y8 with the 8 
coordinates x0, x1, x2, x3, x4, x5, x6, x7 (Figure 3) for xi real, which we shall refer as the 
“Y-coordinates”. 

One can represent the 8-dimensional matrix Y8 (Figure 3) as the sum of the 8 
basis matrices jk (k = 0, 1, 2,…7), each of which is connected with one of the 
coordinates. In this case one can present the matrix Y8 by the vector form of Equation 1, 
rewritten explicitly in Figure 4:  
                         Y8=x0*j0+x1*j1+x2*j2+x3*j3+x4*j4+x5*j5+x6*j6+x*j7                         (1) 

 
 
 
 
 

Y8  =ɯ0* 

0   1   0   0   0   0   0   0 
0   1   0   0   0   0   0   0 
0   0   1   0   0   0   0   0 
0   0   1   0   0   0   0   0 
0   0   0   0   0   1   0   0 
0   0   0   0   0   1   0   0 
0   0   0   0   0   0   1   0 
0   0   0   0   0   0   1   0

  +  ɯ1*

1   0   0   0   0   0   0   0 
1   0   0   0   0   0   0   0 
0   0   0   1   0   0   0   0 
0   0   0   1   0   0   0   0 
0   0   0   0   1   0   0   0 
0   0   0   0   1   0   0   0 
0   0   0   0   0   0   0   1 
0   0   0   0   0   0   0   1

 
 
 

 
+ 

 
 
 

    
 
 
 
 

     + ɯ2* 

0   0   1   0   0   0   0   0 
0   0   1   0   0   0   0   0 
0  -1   0   0   0   0   0   0
0  -1   0   0   0   0   0   0
0   0   0   0   0   0  -1   0
0   0   0   0   0   0  -1   0
0   0   0   0   0   1   0   0 
0   0   0   0   0   1   0   0

 +  ɯ3* 

0   0   0   1   0   0   0   0 
0   0   0   1   0   0   0   0 
-1  0   0   0   0   0   0   0 
-1  0   0   0   0   0   0   0 
0   0   0   0   0   0   0  -1 
0   0   0   0   0   0   0  -1 
0   0   0   0   1   0   0   0 
0   0   0   0   1   0   0   0

 
 
 
 

+ 

    
 
 
 

     + ɯ4* 

0   0   0   0   0   0  -1   0
0   0   0   0   0   0  -1   0
0   0   0   0   0   1   0   0 
0   0   0   0   0   1   0   0 
0   0   1   0   0   0   0   0 
0   0   1   0   0   0   0   0 
0  -1   0   0   0   0   0   0
0  -1  0   0   0    0   0   0

 +  ɯ5* 

0   0   0   0   0   0   0  -1 
0   0   0   0   0   0   0  -1 
0   0   0   0   1   0   0   0 
0   0   0   0   1   0   0   0 
0   0   0   1   0   0   0   0 
0   0   0   1   0   0   0   0 
-1  0   0   0   0   0   0   0 
-1   0   0   0   0   0   0   0

 
 
 
 

+ 

    



 
 
 

     + ɯ6* 

0   0   0   0   0  -1   0   0
0   0   0   0   0  -1   0   0
0   0   0   0   0   0  -1   0
0   0   0   0   0   0  -1   0
0  -1   0   0   0   0   0   0
0  -1   0   0   0   0   0   0
0   0  -1   0   0   0   0   0
0   0  -1   0   0   0   0   0

 + ɯ7* 

 0   0   0   0  -1   0   0   0
 0   0   0   0  -1   0   0   0
 0   0   0   0   0   0   0  -1
 0   0   0   0   0   0   0  -1
-1   0   0   0   0   0   0   0
-1   0   0   0   0   0   0   0
 0   0   0  -1   0   0   0   0
 0   0   0  -1   0   0   0   0

 

Figure 4. The representation of matrix Y8 as the sum of the 8 basis matrices. The left 
column shows the basis matrices, which are related to the coordinates x0, x2, x4, x6 with 
the even indexes. The right column shows the basic matrices, which are related to the 
coordinates x1, x3, x5, x7 with the odd indexes. 

The most important and unexpected feature of these matrices is that the set of these 8 
basis matrices j0, j1, j2, j3, j4, j5, j6, j7 forms a closed set under multiplication: a 
multiplication between any pair of matrices from this set generates another matrix from 
this set. A multiplication table for these products is shown in Figure 5. The result of 
multiplying any two basis elements, which are taken from the left column and the upper 
row, is shown in the cell at the intersection of its row and column in the multiplication 
table (for example, in accordance with this multiplication table j2*j5 = - j7). It should be 
noted that this multiplication is not commutative. 

 
 j0 j1 j2 j3 j4 j5 j6 j7

j0 j0 j1 j2 j3 j4 j5 j6 j7
j1 j0 j1 j2 j3 j4 j5 j6 j7
j2 j2 j3 -j0 -j1 -j6 -j7 j4 j5
j3 j2 j3 -j0 -j1 -j6 -j7 j4 j5
j4 j4 j5 j6 j7 j0 j1 j2 j3
j5 j4 j5 j6 j7 j0 j1 j2 j3
j6 j6 j7 -j4 -j5 -j2 -j3 j0 j1
j7 j6 j7 -j4 -j5 -j2 -j3 j0 j1

Figure 5. The multiplication table of the basic matrices 
     j0, j1, j2, j3, j4, j5, j6, j7 of the matrix Y8 from Figures 3 and 4. 

Such a multiplication table defines an 8-dimensional algebra Y8 over a field. 
Multiplication of any two members of the octet algebra Y8 generates a new member of 
the same algebra. Concerning the matrix form of such multiplication, it means that both 
factors in a multiplication have the identical matrix disposition of their 8 parameters x0, 
x1, …, x7 (in the first factor) and y0, y1,…, y7 (in the second factor) and the final matrix 
has the same matrix disposition of its 8 relevant parameters z0, z1, …, z7. This is similar 
to the situation of real numbers (or of complex numbers, or of hypercomplex numbers) 
when multiplication of any two members of the numeric system generates a new 
member of the same numerical system. In other words, the expression 
Y8=x0*j0+x1*j1+x2*j2+x3*j3+x4*j4+x5*j5+x6*j6 +x7*j7 can be considered to be a kind of 
8-dimensional number similar to the way in which complex numbers are 2-dimensional 
or quarterions are 4-dimensional.  

This new genetic algebra Y8 belongs to a set of bipolar algebras (or Yin-Yang-
algebras, or even-odd-algebras) and it has interesting mathematical properties which are 
similar in many aspects to genetic bipolar algebras described in the works [Petoukhov, 
2008a,b]. 

Permutations of elements play an important role in the theory of signal 
processing. One can study the influence that the simultaneous permutations of the 
positions in all 64 genetic triplets have upon matrices S3 and Y8. Six permutations of 
triplets are possible: 1-2-3, 2-3-1, 3-1-2, 1-3-2, 2-1-3, 3-2-1. For example, if one 
changes the initial order, 1-2-3, in all triplets into the new order, 2-3-1, then many cells 
of the initial genomatrix S3 are occupied by new triplets. For example, the matrix cell 
with the triplet CAU is occupied by the triplet AUC, etc. As a result, the initial 



genomatrix S3/123 (we have included here an additional index 123 into the previous 
symbol for matrix S3 to show the appropriate juxtaposition of the 1-2-3 positions in the 
triplets) is reconstructed into the new genomatrix S3/231 with a new black-and-white 
mosaic. This new matrix S3/231 is transformed by the same alphabetic algorithm of the 
digitization which was described above into a new integer matrix Y8/231 with the same 
eight coordinates x0, x1, x2, x3, x4, x5, x6, x7 in the new configuration. One can check that 
this new numeric matrix Y8/231 is the matrix form of the representation of a new 8-
dimensional bipolar algebra. The same holds for the other four matrices S3/312, S3/132, 
S3/213 and S3/321, which also correspond to new configurations of triplets juxtaposed by 
the permutations: 312, 132, 213, 321. These four matrices, each of which has its own 
black-and-white mosaic, are transformed by the same alphabetic digitization algorithm 
into new 8-fold matrices Y8/312, Y8/132, Y8/213 and Y8/321. Each of these four matrices also 
provides a matrix form of representation of its own 8-dimensional bipolar algebra. This 
matrix genetics approach has many connections with principles and methods of 
symmetry (see for example [Darvas, 2007; Darvas, Petoukhov, 2005]). 

 
4. A CONNECTION TO HADAMARD MATRICES.  
 
Let us consider some connections of the genetic matrices to matrix formalisms from the 
theory of discrete signal processing. One of the most important classes of matrices 
associated with this theory is the so called Hadamard matrices. These matrices are also 
used in the study of error-correcting codes such as the Reed-Muller code, in spectral 
analysis, in multi-channel spectrometers with Hadamard transformations, in quantum 
computers with Hadamard gates (or logical operators), in quantum mechanics as unitary 
operators, etc. A huge number of scientific publications are devoted to Hadamard 
matrices. These matrices provide for effective means of information processing.  

By definition, a Hadamard matrix of dimension “n” is the (n*n)-matrix H(n) 
with elements “+1” and “-1”. It satisfies the condition H(n)*H(n)T = n*In, where H(n)T 
is the transposed matrix and In is the (n*n)-identity matrix. The Hadamard matrices of 
dimension 2k are given by the recursive formula H(2k) = H(2)(k) = H(2)�H(2k-1) for 2 d 
k�N, where � denotes the Kronecker (or tensor) product, (k) denotes Kronecker 
exponentiation, k and N are integers, H(2) is illustrated in Figure 6.  

 
  1 1 1 1
 1 1  -1 1 -1 1

H(2) = -1 1 ;   H(4) = -1 -1 1 1
  1 -1 -1 1

  
 H(2K-1) H(2K-1) 

H(2K) = -H(2K-1) H(2K-1) 
  

Figure 6. The family of Hadamard matrices H(2k) based on the Kronecker product 
 
Is there any natural connection between the genetic matrices S3/123, S3/231, S3/312, 

S3/132, S3/213 and S3/321 and Hadamard matrices? A positive answer to this question could 
lead to new thoughts about the structure of the genetic code.  

The answer to this question is positive: such an algorithmic connection does 
exist. It is associated with fundamental and somewhat enigmatic features of the genetic 
code, namely, 1) the mutual replacement of the letters U and T in RNA and DNA and, 
2) the difference of these letters from other letters A, C, G due to the absence of amids 
(amino-groups) within them. This algorithm is named the U-algorithm, and it was used 
in the study of genomatrices of the Kronecker type [Petoukhov, 2008a,b]. Let us 
demonstrate its application to the genomatrix S3/123 (Figure 1). 
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(Arg) 

CGU 
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(Trp) 

UGU 
(Cys) 

UUU 
(Phe) 

UUG
(Leu)

GUG 
(Val) 

GUU 
(Val) 
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1 -1 -1 1 -1 1 1 -1
1 1 1 1 -1 -1 -1 -1
-1 -1 1 1 1 1 -1 -1
-1 1 -1 1 1 -1 1 -1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 1 1 1 1 1 1 1 
1 -1 -1 1 1 -1 -1 1 

Figure 7. Top: the result of the transformation of matrix S3/123 into a new mosaic 
genomatrix. Bottom: a Hadamard (8*8)-matrix with the similar mosaic. 

According to the U-algorithm we invert the signs in cells of the matrix S3/123 
every time the letter U occupies the first or the third positions of a triplet. For example, 
by this U-algorithm the cells with the triplets UCA and GAU change their sign once, 
while the cell with the triplet UAU changes its sign twice which means that the sign of 
this cell is unchanged. As a result of such U-algorithmic sign changes, a new mosaic 
genomatrix appears (Figure 7, top). Its mosaic is identical to the corresponding mosaic 
of a Hadamard matrix. Actually, if each black triplet (white triplet) in this genomatrix is 
replaced by number “+1” (“-1”) a numeric matrix is formed (Figure 7, bottom). One can 
easily check that this matrix satisfies the definition of Hadamard (8*8)-matrices: 
H(8)*H(8)T = 8*In.  

The five genomatrices S3/231, S3/312, S3/132, S3/213 and S3/321 are also connected 
with Hadamard matrices because they are transformed into their own Hadamard 
matrices by means of the same U-algorithm. One can suppose that this U-algorithm (of 
inverting the signs every time the letter U or T appears in an odd position of triplets) is 
connected with the biological mechanism of mutual replacement of the letters U and T 
at transition from RNA to DNA and vice versa.  

 
5. GENOMATRICES WITH NUMBERS OF HYDROGEN BONDS.  
 
Each nitrogenous base has a particular number of its hydrogen bonds: the 
complementary bases, C and G, have 3 hydrogen bonds, while the complementary 
bases, A and U, have 2 hydrogen bonds. Investigations of the Kronecker family of 
genomatrices reveals interesting mathematical properties of these matrices in the case 
for which a symbol of each triplet is replaced by the number of ways in which the 
hydrogen bonds of its bases can interact given by the product of its number of hydrogen 
bonds. For example the triplet CAG is replaced by an integer 3*2*3=18, etc. In what 
follows, we study the integer based genomatrices formed by these integer product 
replacements as ordered by Gray code. 
 



As a result, the symbolic genomatrix S2, S3, etc. (Figure 1) are transformed into 
a family of integer matrices M2, M3, etc. (Figure 8). These matrices are bisymmetric that 
is symmetric relative to both diagonals. 

 
 
 
 
M1= 

 
 
3 2 
2 3 

 
 
 
; M2= 

 
 
9 6 4 6 
6 9 6 4 
4 6 9 6 
6 4 6 9 

 
 
 
; M3=

27 18 12 18 12  8 12 18 
18 27 18 12  8 12 18 12 
12 18 27 18 12 18 12  8 
18 12 18 27 18 12  8 12 
12  8  12 18 27 18 12 18
8  12 18 12 18 27 18 12 
12 18 12  8  12 18 27 18
18 12  8  12 18 12 18 27

 
Figure 8. Integer matrices with elements represented by integer products of hydrogen 
bonds in monoplets, duplets and triplets 

 
Notice that in M1 the natural numbers 2, 3 appear, in M2 the numbers 4, 6, 9 

appear while in M3 the numbers 8, 12, 18, 27 appear, with each row and column 
expressing the same species of positive integers with no integer appearing adjacent to 
itself in a row or column. These sets of integers come from a triangle of positive 
integers attributed to the 2nd century AD Syrian mathematician Nicomachus (Kappraff, 
2000) and represents sequences of musical fifths. The Nicomachus Triangle, T(n,k), is 
reproduced in Table 1 where the integers in the n-th row are 

.0};0,32{ tdd� nnkkkn   Here if the central integer 6 is thought to be the length 
of a string representing a fundamental tone, then 4 and 9 of row 3 represent the string 
lengths corresponding to the rising and falling musical fifths, 2:3 and 3:2.  Also the fifth 
row represents the string lengths that give rise to a pentatonic scale with fundamental 
string length of 36 units while the integers in row 7 represent string lengths of a 
heptatonic scale with 216 as the string length of the fundamental.  The Triangle T(n,k) 
in Table 1 has the property that every row, column, diagonal, and line joining any two 
elements contains a geometric progression.  

 
Table 1. The Nicomachus Triangle, T(n,k)                         Table 2. Pascal’s Triangle 

               1                                                                            1 
               2    3                                                                      1    1   
               4    6     9                                                               1    2    1 
               8   12   18    27                                                      1    3    3    1                                                                            
              16  24   36    54     81                                             1    4    6    4   1 
              32  48   72   108  162  243                                            etc. 
              64  96  144  216  324  486  729                  
                           etc.   
                                                         
T(n,k) is the triangle of coefficients in the expansion of (2 + 3x)n; given by the 

generating function 
)32(1

1
xy ��

. For example, 8,12,18,27 are generated by 

 � 3)32( x 32 271831238 xxx �u�u�   where we see that there is one 8, one 
27, three 12’s and three 18’s in each row or column of matrix M3.  Furthermore if we set 
x = 1 we find that the sum of the elements in each row or column of Mn equals 5n, e.g., 
for M3 the sum = 125. In other words, successive integers from a row of the 
Nicomachus triangle are multiplied by successive integers from rows of Pascal’s 
Triangle, given in Table 2, e.g., (1, 3, 3, 1) x (8, 12, 18, 27)  where x  denotes dot 
product in order to sum the row and column elements of M3.    

It was shown [Petoukhov, 2001, 2005] that, 

                  2/1
11 MP   = »
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WW
WW

/1
/1

                                                        (2) 



where 
2

51�
 W  is the golden mean.  Associating W  with 11 and 00, and W/1 with 

10 and 01, we obtain matrices of the square roots of each of the higher nM matrices 

denoted by nP . For example,  
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11/1
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1/11
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                               (3) 

1010 corresponds to 2WWW  u ,  1100 corresponds to 2/1/1/1 WWW  u , and 1011 
corresponds to 1/1  u WW .  It can be shown that the elements of 2/1

nn MP   are all 
powers of the golden mean [Kapraff, 2009]. 
 
6. GENERALIZED BISYMMETRIC MATRICES.  
 
Bisymmetric matrices are investigated in matrix genetics specially [Petoukhov, 2001, 
2005]. Here we study general forms of bisymmetric matrices, which are constructed by 
means of the Gray code ordering. We start with the matrix M1: 

                             M1 =  »
¼

º
«
¬

ª
ab
ba

                                                                    (4) 

 
The higher order matrices Mn are determined in a similar manner as was done 

for the matrix with a = 3 and b=2. They contain columns and rows with integers from 
each row of the generalized Nicomachus Triangle in Table 3 with multiplicities given 
by Pascal’s Triangle.  For example, using elements of row 3 of Table 3,  

M2 =  

»
»
»
»
»

¼

º

«
«
«
«
«

¬

ª

22

22

22

22

aabbab
abaabb
babaab
abbaba

                                           (5) 

 
Table 3.  Generalized Nicomachus Triangle 

                        1 
                         b    a                                                                  (6)                         
                         b2   ab    a2 
                         b3   ab2   a2b   a3 
                         b4   ab3   a2b2  a3b   a4                                            
                                                         
The elements of Mn are generated by (b + ax)n with each row and column of Mn  

summing to (a+b)n. On the other hand we have shown [Kappraff, 2009] that the square 
root of the 1M  and 2M  matrices can be expressed as, 

P1 =  »
¼

º
«
¬

ª
DE
ED

   and   P2 =  
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ª
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22

DDEEDE
DEDDEE
EDEDDE
DEEDED

                (7a,b) 

 where,   

E
D

2
b

          and   
2

22 baa ��
 E  .                               (8a,b)     



 
Therefore D  and E  are real for a>b and complex for a<b.  Since 1

2
1 MP  , 

it follows that, 
 
                 22 ED � a ,  DE2 b  ,                                       (9a,b)  
 
and from this it follows that, 
 

        ba � � ED , and 
b
a2

 �
D
E

E
D                            (10a,b) 

Also, D  and E   are roots of the fourth degree polynomial,                        
                  
         0)( 222224  ��� EDED xx                                       (11) 
 
Making use of Equations 8a,b,  Equation 11 is rewritten, 
 

          0
4

2
24  ��

baxx                                                       (12) 

where using Equation 8a and 9a, 
 

           2
2

2

4
E

E
� 

ba                                                            (13) 

 
Equation 12 can also be rewritten as, 
 

            
4

2
24 baxx � ,                                                        (14) 

and if we consider the geometric sequence, 
 
               1, 2D ,  4D , 6D , 8D , …                                       (15)   
where , 
 

           42
2

222

4
�� � nnn ba DDD ,                                        (16) 

this corresponds to a generalized “Fibonacci” sequence, {cn} in which, 

        1,0 21   cc  and 2

2

1 4 �� � nnn cbacc  .                        (17a) 

The ratio of successive terms, 
n

n

c
c 1� approaches 2D  in the limit where, in the 

case that D is complex, then 2D  denotes the square of the absolute value.  Also 

n

n

c
c 1� approaches 2D  from below.   

 
If we let ,21

2
��� kknn cccg  then ng  can be shown to satisfy the recursion, 

 

               .)
416

( 2

224

1
2

�� �� nnn gbabgag                               (17b) 

 



Setting b = 2 and letting  22 r Na ,  Equation 13 reduces to, 
 

              21 22
2 r � NE

E
  and     ED /1 .                    (18a,b) 

. 
It follows that, 
 

             N E
E

#
1                                                          (19a) 

 
Since ED /1 ,  Equation 19a is rewritten, 
 

               N 
D

D 1
#                                                            (19b) 

We refer to solutions of the equations,   
 
            x - 1/x = N   and x  +  1/x = N                                   (20) 
 
as the N-th silver means of the first and second kind respectively and denote 

them as )(1 NSM  and )(2 NSM  [Kappraff, 2000b].  When N = 1, W  )1(1SMx , 

the golden mean.   Therefore, in Equation 19b, D = )(1 NSM  or  D = )(2 NSM .    
     As a result of Equation 20, D  satisfies one of the equations, 
 
                       12 r Nxx                                                       (21) 
  
Therefore, the sequence  
  
                1, 1D ,  2D , 3D , 4D , …                                          (22) 
 
is a generalized Pell sequence [Kappraff, 2000b] and satisfies the recursion, 
 
                   21 �� r nnn N DDD                                                 (23) 
 
as does the sequence, }{ kc  where, 

 
                   21 �� r kkk cNcc                                                   (24a)  

where 
n

n

c
c 1� approaches D  in the limit.  We also find that when b = 2, 

Equation 17b has the special solution: ,kgn   i.e.,  

 
                  kccc kkn  � �� 21

2   for all n                                      (24b) 
 
This means that if k = 0, the sequence {cn} is a geometric sequence.  Otherwise 

it is an approximate geometric sequence. 
 
     We consider eight examples: 
 
Example 1:  a = 3, b = 2, N=1.  WD   )1(1SM  and WE /1 ,  row and 

column elements are generated by nx)32( � ,  row and column sum = n5 ,  Sequence 



17 yields {0,1,3,8,21,…}, even indexed  Fibonacci terms with ratio of successive terms 
approaching .2W   In Equation 24b, we find that k = 1.  The golden mean has found 
many applications.  LeCorbusier made it the basis of his Modulor system of 
architectural design (Kappraff, 2000c). 

 
Example 2:  a = 6 , b = 2,  N = 2.  Replacing this into Equation 8 yields  

21)2(1 �  SMD , 
21

1
�

 E ,  row and column elements are generated 

by nx)62( � ,  row and column sum = n8   Sequence 17a yields:  {0,1,6,35,204,…}, 

approaching 2E .   In Equation 24b, we find that k = 1. The proportion, 21�  is 
commonly known as the silver mean and was the basis of the system of proportions 
used in the Roman empire (Kappraff, 2000c). 

 
Example 3: a = 5, b = 4,  2 D ,  1 E , row and column elements 

generated by (4 + 5x)n, row and column sum = 9n.  Sequence 17, i.e., 

1 25 4n n nc c c� � � ,  yields : {0,1,5,21,85,341,1365,…} = }
3

14{ �
 

n

nc  as the 

ratio of successive terms tends to 4. 
 
Example 4: a = 5, b = 3,  2/3 D ,  2/1 E ,  row and column 

elements generated by nx)35( � , row and column sum = n8 . The generalized 

Nicomachus Triangle in Table 4 is generated from ).0}(53{ nkkkn ddu�  
 
 
 
 
 

Table 4.  Generalized Nicomachus Triangle Generated by (3,5) 
 
1 
3       5 
9     15    25 
27    45    75  125 
81  135  225  375  625  
 
Each column of this Triangle represents a sequence of musical fifths and 

recreates the ancient Pythagorean scale, whereas any three successive columns generate 
the tones of the ancient Just scale [Kappraff, 2000, 2009; McClain, 1976].    

Example 5: a = 4, b = 3,  
2

74 �
 D ,   

2
74�

 E , row and column 

elements generated by nx)34( � ,  row and column sum = n7 . 
 
Example 6: a = 7, b = 2, N = 3, 2

2 )3( WD   SM ,  2/1 WE  , row and 

column elements generated by nx)72( � ,  row and column sum = n9 . 

Example 7: a = 1, b = 1, 1/ 2D  , 1/ 2E  . Row and column elements 

are generated by (1 )nx� . 
 
All elements of the generalized Nicomachus Triangle (see Table 3) are ones 

but taking into account multiplicity yields Pascal’s Triangle  (see Table 2) whose (n,k)-

th element is equal to .
)!(!

!
knk

n
�

 



The ratio of successive terms in Sequence 17, i.e., 1,0 21   cc  and 

1 2
1
4n n nc c c� � � ,                           yields:  1, ¾, 2/3, 5/8, 3/5, 7/12, 4/7, … 

approaching the value of ½. These ratios are the fundamental, musical fourth, fifth, 
minor sixth, major sixth of the ancient Just scale, and two approximations to the major 
and minor sevenths, all approaching the octave value of ½. If the modulus M of a pair of 
successive approximating fractions a/b and c/d is defined as M = (ad – bc) then all 
moduli of the approximating sequence have the value 1, e.g., (1x4 – 1x3) = 1, (3x3 – 
4x2) = 1, etc.  As a result, the approximating fractions appear as elements of successive 
rows of the Farey Table to the right of ½ [Kappraff, 2000b].   

Example 8:  a = 1, b = 2,  N = i,  
6/

1 )( SD ieiSM   ,  6/SE ie� , row and column terms 

are generated by nx)2( � ,  row and column sum = n3 .  
The generalized Nicomachus Triangle yields,  

 
    Table 5. Generalized Nicomachus Triangle Generated by (1,2) 

                 
1 
2    1 
4    2   1  
8    4   2   1 
16  8   4   2   1 
 
Multiplying the elements of Table 5 by the elements of Pascal’s Triangle to 

account for multiplicity yields the square of Pascal’s Triangle, a triangle whose (i,j)-th 
entry is (i,j)x2i-j where (i,j) is the element of the i-th row and j-th column of Pascal’s 
Triangle. 

                 
    Table 6.  Square of Pascal’s Triangle  

 
1                              
2    1 
4    4    1 
8   12   6   1   
16  32  24  8   1    
 
The rows of Table 6 give the number of vertices, edges, faces, cells, etc of 

hypercubes, of increasing dimension, e.g., H0 (point) V = 1; H1 (line segment) V = 2, E 
= 1; H2 (square) V = 4, E = 4,  F=1;  H3 (cube) V =  8, E = 12, F = 6, C = 1; H4 
(tesseract) V = 16, E = 32, F = 24, C = 8, hypercube = 1.  Sequence 17 generates the 
sequence:  0,1,1,0,-1,-1,0,1,1,…,  and the ratio of successive terms should approach 

2D = 1.  In fact, the ratio of a subsequence approaches 1 identically as it should.  In Eq. 
24b, we find once again that k = 1. 

     If a = 2, b = 1, then the generalized Nicomachus Triangle is identical to the 
one for a = 1, b = 2 but the columns are in reverse order.  On the other hand 

2
32 �

 D  and 
2

32 �
 E . 

 
7.1 PYTHAGOREAN TRIPLES AND THE SQUARE OF A 2*2 BISYMMETRIC 
MATRIX.  
 
For x,y real numbers with x>y,  and  
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The square of this matrix is, 
 

 M2 = 
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Notice that M2 has values that are the hypotenuse and altitude of a right 

triangle whose base is 22 yx � .  As a result, if x and y are integers, then 

{ 2222 ,2, yxxyyx �� } is a Pythagorean triple, i.e., three integer sides of a right 
triangle. 

       Compare this with the complex number x + iy and its square, 
ixyyxiyx 2)( 222 �� � .  Here the argument of x+iy is doubled while its 

modulus is squared, i.e., if xy /tan  T  then 22
22tan

yx
xy
�

 T  while the modulus 

squares from 22 yx � to 22 yx �  as shown in Figure 3. The hypotenuse of this 

triangle is 22 yx �  so that it is identical with the triangle in Figure 3.          
 
 
 

Figure 9.  Pythagorean triples 
   We now identify 

»
¼

º
«
¬

ª
xy
yx

with the ordered pair (x,y) 

or equivalently with the complex 
number x + iy so that 

xy /tan  T =c.  It can be shown 
that the ordered pair, (c,1), 
corresponds to a triangle with the 
radius r of the inscribed circle, and 
area A given by, 

                                              1� cr ,  )1)()(1( �� cccA  
 

          It follows that the radius r of the inscribed circle and the area of triangle (a,b) is, 
 

          22 )1/( babbabr � � and  
         )()1/)(/)(1/( 224 baabbabababA � ��                         (27a,b) 

 
It also follows from Equations 27  that, 
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where this equation holds for triangles that are not right triangles. 
 

7.2 THE SQUARE ROOT OF A 2*2 BISYMMETRIC MATRIX 
 
 It follows from Equation 26 that, 
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We now pose the problem to find x and y such that, 
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where a is the hypotenuse and b is the altitude of a right triangle with vertex angle T  

whose base is 22 ba � ,  22/tan bab � T and xy /2/tan  T . As a result, 
using standard trigonometric identities, 

                    
T
TT

cos1
cos12/tan

�
�

    where  
a

ba 22

cos �
 T  

 
After some algebra, 
 

                         
b

baa 22

2/tan ��
 T  

 
which implies that, 

        kbx   and  )( 22 baaky �� .                           (29) 
 

But, since the hypotenuse of the right triangle with vertex 2/T  is a , 
 

                      ayx  � 22                                           (30) 
 
Replacing Equations 29 into 30 and solving for k it follows after some algebra 

that, 
 

              
y

bx
2

     and   
2

22 baay ��
  

 
which agrees with Equations 8a and b. 
 

7.3 PYTHAGOREAN TRIPLES AND POWERS OF 2X2 BISYMMETRIC 
MATRICES   
 
For a,b natural numbers with a>b,  even powers of an arbitrary 2x2 bisymmetric matrix,  

                                                           
n

ab
ba 2

»
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º
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¬

ª
 

 
result in a sequence of pairs of whole numbers that are hypotenuse and side of 
Pythagorean triples for all values of n. The third side will be powers of 22 ba � .  If 

cba  � 22 for c a natural number, i.e., if {a,b,c} is a Pythagorean triple,  then all 
powers of  the bisymmetric matrix results in hypotenuse and side of  Pythagorean triples 
with the third side being powers of c.  It should be noted that the first number of these 



Pythagorean triples, a, represents the length of the hypotenuse unlike the first number of 
(a,b) which was the length of a side.  

Example 1:  (3,2) 
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  Therefore the Pythagorean triple is {13,12,5} 
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  with {313,312,25} 
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{7813,7812,125} 
 
Example 2:  a=5, b=4 where {5,4,3} is a triple. 
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8. CONCLUSION.  

Petoukhov’s genomic matrices have led to new genomic algebras, 
generalization of the golden mean, generalized Fibonacci sequences, generalized 
Nicomachus Triangles, and to an algorithm for generating Pythagorean triples. Pascal’s 
Triangle plays an important role. Although Petoukhov’s matrices reproduce the 
sequences of musical fifths found in the rows of the Nicomachus Triangle, there is no 
obvious connection between the genomic matrices and the musical scale.  

Why it is important to study connections of the genetic code with various 
algebras? In the beginning of the 19-th century the following viewpoint existed in 
science: Euclidean geometry was the sole geometry and the arithmetic of real numbers 
was the sole arithmetic with which to describe the natural world. But this viewpoint was 
called into question by the discovery of non-Euclidean geometries and the quaternions 
of Hamilton; this algebra of quaternions presented science with a new multidimensional 
arithmetic for the study of natural systems [Kline, 1980]. Now science understood that 
different natural systems can possess their own geometries and algebras. The example 
of Hamilton, who spent 10 years in his attempts to describe the geometry of 3-
dimensional space by means of 3-dimensional algebras without success, presents a 
cautionary tale. Hamilton’s experience shows the importance of developing an 
appropriate system of algebra with which to describe a natural system. One can add that 
geometrical and physical-geometrical properties of various natural systems (including 
laws of conservation, theories of oscillations and waves, theories of potentials and 
fields, etc.) can depend on the type of algebras which are appropriate to them. 

One more important question is the following. Why the genetic code and its 
degeneracy are organized in such manner that the genetic matrix S3 (Fig. 1) has the 



natural algorithmic connection with the matrix Y8 (Fig. 3) which presents the 8-
dimensional algebra? One of possible reasons of such situation is related with a fact that 
sets of DNA and RNA are the sets which participate in biological reproductions. They 
are reproduced in a huge number of cells and in chains of generations of organisms. 
Algebraic operations of addition and multiplication can be useful for such biological 
sets and for interactions among parts of them. By the way, the matrix Y8 (Fig. 3) has an 
interesting property: if modules of all components are equal to 1 (|x0|=|x1|=…=|x7|=1) 
then Y8

2=4*Y8. In other words, in this case the tetra-reproduction of the genetic matrix 
Y8 takes place. It resembles a biological phenomenon of tetra-reproductions of gametes 
(sex cells) which bear heredity information. 

The described 8-dimensional algebras can play also a role of manager layers 
which determine many features of genetic coding (by analogy with computer 
technology). Or they can lead to algebras of logical operators of genetic systems. These 
questions should be investigated by means of using of symmetrological and other 
methods in the nearest future. 

This work was supported by the Russian Federal Agency of Science and 
Innovations (contract ʋ 02.740.11.0100). 
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